Spaces:
Running
Running
with comments
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
# app.py
|
2 |
-
# Adapted to follow the logic from the provided Django api/views.py
|
3 |
import os
|
4 |
import cv2
|
5 |
import tempfile
|
6 |
import numpy as np
|
7 |
import uvicorn
|
8 |
import base64
|
|
|
9 |
from PIL import Image
|
10 |
from inference_sdk import InferenceHTTPClient
|
11 |
from fastapi import FastAPI, File, UploadFile
|
@@ -57,7 +58,6 @@ def detect_eyes_roboflow(image_path):
|
|
57 |
h, w = raw_image.shape[:2]
|
58 |
scale = min(1.0, MAX_INFER_DIM / max(h, w))
|
59 |
|
60 |
-
# Use a temporary file for inference if resizing is needed
|
61 |
if scale < 1.0:
|
62 |
small_image = cv2.resize(raw_image, (int(w*scale), int(h*scale)))
|
63 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
@@ -69,17 +69,14 @@ def detect_eyes_roboflow(image_path):
|
|
69 |
try:
|
70 |
resp = CLIENT_EYES.infer(infer_path, model_id="eye-detection-kso3d/3")
|
71 |
finally:
|
72 |
-
# Clean up temp file if one was created
|
73 |
if scale < 1.0 and os.path.exists(infer_path):
|
74 |
os.remove(infer_path)
|
75 |
|
76 |
crops = []
|
77 |
for p in resp.get("predictions", []):
|
78 |
-
# Scale coordinates back to original image dimensions
|
79 |
cx, cy = p["x"] / scale, p["y"] / scale
|
80 |
bw, bh = p["width"] / scale, p["height"] / scale
|
81 |
|
82 |
-
# Crop from the original raw image
|
83 |
x1 = int(cx - bw / 2)
|
84 |
y1 = int(cy - bh / 2)
|
85 |
x2 = int(cx + bw / 2)
|
@@ -105,7 +102,6 @@ def get_largest_iris_prediction(eye_crop):
|
|
105 |
|
106 |
def run_leukocoria_prediction(iris_crop):
|
107 |
"""Runs the loaded TensorFlow model on an iris crop."""
|
108 |
-
# The logic from views.py is now directly in the TF model call
|
109 |
enh = enhance_image_unsharp_mask(iris_crop)
|
110 |
enh_rs = cv2.resize(enh, ENHANCED_SIZE)
|
111 |
|
@@ -127,38 +123,47 @@ app = FastAPI()
|
|
127 |
|
128 |
@app.post("/detect/")
|
129 |
async def full_detection_pipeline(image: UploadFile = File(...)):
|
|
|
130 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
131 |
tmp.write(await image.read())
|
132 |
temp_image_path = tmp.name
|
133 |
|
134 |
try:
|
135 |
-
|
136 |
if not detect_faces_roboflow(temp_image_path):
|
|
|
137 |
return JSONResponse(status_code=200, content={"warnings": ["No face detected."]})
|
|
|
138 |
|
139 |
-
|
140 |
raw_image, eye_crops = detect_eyes_roboflow(temp_image_path)
|
141 |
if raw_image is None:
|
142 |
return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."})
|
143 |
-
|
|
|
144 |
if len(eye_crops) != 2:
|
145 |
return JSONResponse(status_code=200, content={
|
146 |
"analyzed_image": to_base64(raw_image),
|
147 |
"warnings": ["Exactly two eyes not detected."]
|
148 |
})
|
149 |
|
150 |
-
|
|
|
|
|
151 |
sorted_eyes = sorted(eye_crops, key=lambda e: e["coords"][0])
|
|
|
|
|
|
|
152 |
images_b64 = {}
|
153 |
flags = {}
|
154 |
|
155 |
-
# This new loop labels the left-most eye as "left" and right-most as "right"
|
156 |
for side, eye_info in zip(("left", "right"), sorted_eyes):
|
|
|
157 |
eye_img = eye_info["image"]
|
158 |
|
159 |
-
# Iris detection and Leukocoria prediction
|
160 |
pred = get_largest_iris_prediction(eye_img)
|
161 |
if pred:
|
|
|
162 |
cx, cy, w, h = pred["x"], pred["y"], pred["width"], pred["height"]
|
163 |
x1, y1 = int(cx - w / 2), int(cy - h / 2)
|
164 |
x2, y2 = int(cx + w / 2), int(cy + h / 2)
|
@@ -166,13 +171,15 @@ async def full_detection_pipeline(image: UploadFile = File(...)):
|
|
166 |
iris_crop = eye_img[y1:y2, x1:x2]
|
167 |
|
168 |
has_leuko, confidence = run_leukocoria_prediction(iris_crop)
|
|
|
169 |
flags[side] = has_leuko
|
170 |
else:
|
|
|
171 |
flags[side] = None
|
172 |
|
173 |
images_b64[side] = to_base64(eye_img)
|
174 |
-
|
175 |
-
|
176 |
return JSONResponse(status_code=200, content={
|
177 |
"analyzed_image": to_base64(raw_image),
|
178 |
"two_eyes": images_b64,
|
|
|
1 |
# app.py
|
2 |
+
# Adapted to follow the logic from the provided Django api/views.py with added logging
|
3 |
import os
|
4 |
import cv2
|
5 |
import tempfile
|
6 |
import numpy as np
|
7 |
import uvicorn
|
8 |
import base64
|
9 |
+
import io
|
10 |
from PIL import Image
|
11 |
from inference_sdk import InferenceHTTPClient
|
12 |
from fastapi import FastAPI, File, UploadFile
|
|
|
58 |
h, w = raw_image.shape[:2]
|
59 |
scale = min(1.0, MAX_INFER_DIM / max(h, w))
|
60 |
|
|
|
61 |
if scale < 1.0:
|
62 |
small_image = cv2.resize(raw_image, (int(w*scale), int(h*scale)))
|
63 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
|
|
69 |
try:
|
70 |
resp = CLIENT_EYES.infer(infer_path, model_id="eye-detection-kso3d/3")
|
71 |
finally:
|
|
|
72 |
if scale < 1.0 and os.path.exists(infer_path):
|
73 |
os.remove(infer_path)
|
74 |
|
75 |
crops = []
|
76 |
for p in resp.get("predictions", []):
|
|
|
77 |
cx, cy = p["x"] / scale, p["y"] / scale
|
78 |
bw, bh = p["width"] / scale, p["height"] / scale
|
79 |
|
|
|
80 |
x1 = int(cx - bw / 2)
|
81 |
y1 = int(cy - bh / 2)
|
82 |
x2 = int(cx + bw / 2)
|
|
|
102 |
|
103 |
def run_leukocoria_prediction(iris_crop):
|
104 |
"""Runs the loaded TensorFlow model on an iris crop."""
|
|
|
105 |
enh = enhance_image_unsharp_mask(iris_crop)
|
106 |
enh_rs = cv2.resize(enh, ENHANCED_SIZE)
|
107 |
|
|
|
123 |
|
124 |
@app.post("/detect/")
|
125 |
async def full_detection_pipeline(image: UploadFile = File(...)):
|
126 |
+
print("\n--- 1. Starting full detection pipeline. ---")
|
127 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
128 |
tmp.write(await image.read())
|
129 |
temp_image_path = tmp.name
|
130 |
|
131 |
try:
|
132 |
+
print("--- 2. Checking for faces... ---")
|
133 |
if not detect_faces_roboflow(temp_image_path):
|
134 |
+
print("--- 2a. No face detected. Aborting. ---")
|
135 |
return JSONResponse(status_code=200, content={"warnings": ["No face detected."]})
|
136 |
+
print("--- 2b. Face found. Proceeding. ---")
|
137 |
|
138 |
+
print("--- 3. Detecting eyes... ---")
|
139 |
raw_image, eye_crops = detect_eyes_roboflow(temp_image_path)
|
140 |
if raw_image is None:
|
141 |
return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."})
|
142 |
+
|
143 |
+
print(f"--- 4. Found {len(eye_crops)} eyes. ---")
|
144 |
if len(eye_crops) != 2:
|
145 |
return JSONResponse(status_code=200, content={
|
146 |
"analyzed_image": to_base64(raw_image),
|
147 |
"warnings": ["Exactly two eyes not detected."]
|
148 |
})
|
149 |
|
150 |
+
initial_coords = [e['coords'] for e in eye_crops]
|
151 |
+
print(f"--- 5. Initial eye coordinates: {initial_coords} ---")
|
152 |
+
|
153 |
sorted_eyes = sorted(eye_crops, key=lambda e: e["coords"][0])
|
154 |
+
sorted_coords = [e['coords'] for e in sorted_eyes]
|
155 |
+
print(f"--- 6. Sorted eye coordinates: {sorted_coords} ---")
|
156 |
+
|
157 |
images_b64 = {}
|
158 |
flags = {}
|
159 |
|
|
|
160 |
for side, eye_info in zip(("left", "right"), sorted_eyes):
|
161 |
+
print(f"--- 7. Processing side: '{side}' ---")
|
162 |
eye_img = eye_info["image"]
|
163 |
|
|
|
164 |
pred = get_largest_iris_prediction(eye_img)
|
165 |
if pred:
|
166 |
+
print(f"--- 8. Iris found for '{side}' eye. Running leukocoria prediction... ---")
|
167 |
cx, cy, w, h = pred["x"], pred["y"], pred["width"], pred["height"]
|
168 |
x1, y1 = int(cx - w / 2), int(cy - h / 2)
|
169 |
x2, y2 = int(cx + w / 2), int(cy + h / 2)
|
|
|
171 |
iris_crop = eye_img[y1:y2, x1:x2]
|
172 |
|
173 |
has_leuko, confidence = run_leukocoria_prediction(iris_crop)
|
174 |
+
print(f"--- 9. Prediction for '{side}' eye: Has Leukocoria={has_leuko}, Confidence={confidence:.4f} ---")
|
175 |
flags[side] = has_leuko
|
176 |
else:
|
177 |
+
print(f"--- 8a. No iris found for '{side}' eye. ---")
|
178 |
flags[side] = None
|
179 |
|
180 |
images_b64[side] = to_base64(eye_img)
|
181 |
+
|
182 |
+
print(f"--- 10. Final generated flags: {flags} ---")
|
183 |
return JSONResponse(status_code=200, content={
|
184 |
"analyzed_image": to_base64(raw_image),
|
185 |
"two_eyes": images_b64,
|