Spaces:
Running
Running
Adapted to follow the logic from the provided Django api/views.py
Browse files
app.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
-
#
|
|
|
2 |
import os
|
3 |
import cv2
|
4 |
import tempfile
|
5 |
import numpy as np
|
6 |
import uvicorn
|
7 |
-
import requests
|
8 |
-
import io
|
9 |
import base64
|
10 |
from PIL import Image
|
11 |
from inference_sdk import InferenceHTTPClient
|
@@ -16,8 +15,12 @@ from huggingface_hub import hf_hub_download
|
|
16 |
import gradio as gr
|
17 |
|
18 |
# --- 1. Configuration and Model Loading ---
|
19 |
-
|
|
|
|
|
20 |
|
|
|
|
|
21 |
CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
|
22 |
CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
|
23 |
CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
|
@@ -31,177 +34,178 @@ except Exception as e:
|
|
31 |
print(f"--- FATAL ERROR: COULD NOT LOAD LEUKOCORIA MODEL: {e} ---")
|
32 |
raise RuntimeError(f"Could not load leukocoria model: {e}")
|
33 |
|
34 |
-
# --- 2.
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
def detect_faces_roboflow(image_path):
|
|
|
39 |
return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", [])
|
40 |
|
41 |
-
def detect_eyes_roboflow(image_path
|
42 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
try:
|
44 |
-
resp = CLIENT_EYES.infer(
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def get_largest_iris_prediction(eye_crop):
|
60 |
-
"
|
61 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
62 |
-
# Save the original eye crop, not an enhanced version
|
63 |
cv2.imwrite(tmp.name, eye_crop)
|
64 |
-
|
65 |
try:
|
66 |
-
resp = CLIENT_IRIS.infer(
|
67 |
preds = resp.get("predictions", [])
|
68 |
return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None
|
69 |
finally:
|
70 |
-
os.remove(
|
71 |
|
72 |
def run_leukocoria_prediction(iris_crop):
|
73 |
-
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
img_array = np.array(img_resized) / 255.0
|
80 |
img_array = np.expand_dims(img_array, axis=0)
|
|
|
81 |
prediction = leuko_model.predict(img_array)
|
82 |
confidence = float(prediction[0][0])
|
83 |
has_leuko = confidence > 0.5
|
84 |
return has_leuko, confidence
|
85 |
|
|
|
|
|
|
|
|
|
|
|
86 |
# --- 3. FastAPI Application ---
|
87 |
app = FastAPI()
|
88 |
|
89 |
@app.post("/detect/")
|
90 |
async def full_detection_pipeline(image: UploadFile = File(...)):
|
91 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
92 |
-
|
93 |
-
tmp.write(contents)
|
94 |
temp_image_path = tmp.name
|
|
|
95 |
try:
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
if raw_image is None:
|
98 |
return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."})
|
99 |
-
|
100 |
-
return JSONResponse(status_code=400, content={"error": "No face detected."})
|
101 |
-
image_to_process = raw_image
|
102 |
-
was_mirrored = False
|
103 |
-
|
104 |
-
print("--- 1. Attempting detection on original image... ---")
|
105 |
-
eye_crops, error_msg = detect_eyes_roboflow(temp_image_path, image_to_process)
|
106 |
-
print(f"--- 2. Found {len(eye_crops)} eyes in original image. ---")
|
107 |
if len(eye_crops) != 2:
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
try:
|
117 |
-
eye_crops, error_msg = detect_eyes_roboflow(temp_mirrored_image_path, image_to_process)
|
118 |
-
print(f"--- 4. Found {len(eye_crops)} eyes in mirrored image. ---")
|
119 |
-
finally:
|
120 |
-
os.remove(temp_mirrored_image_path)
|
121 |
-
|
122 |
-
if error_msg or len(eye_crops) != 2:
|
123 |
-
return JSONResponse(
|
124 |
-
status_code=400,
|
125 |
-
content={"error": "Could not detect exactly two eyes. Please try another photo."}
|
126 |
-
)
|
127 |
-
|
128 |
-
initial_boxes = [cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY)) for c in eye_crops]
|
129 |
-
print(f"--- 5. Initial eye coordinates (x,y,w,h): {initial_boxes} ---")
|
130 |
-
|
131 |
-
eye_crops.sort(key=lambda c: cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY))[0])
|
132 |
-
|
133 |
-
sorted_boxes = [cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY)) for c in eye_crops]
|
134 |
-
print(f"--- 6. Sorted eye coordinates (x,y,w,h): {sorted_boxes} ---")
|
135 |
-
|
136 |
-
if was_mirrored:
|
137 |
-
print("--- 7. Image was mirrored, reversing eye order for correct labeling. ---")
|
138 |
-
eye_crops.reverse()
|
139 |
-
reversed_boxes = [cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY)) for c in eye_crops]
|
140 |
-
print(f"--- 8. Reversed eye coordinates (x,y,w,h): {reversed_boxes} ---")
|
141 |
-
|
142 |
flags = {}
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
is_success, buffer = cv2.imencode(".jpg", eye_crop)
|
149 |
-
if is_success:
|
150 |
-
eye_images_b64[side] = "data:image/jpeg;base64," + base64.b64encode(buffer).decode("utf-8")
|
151 |
|
152 |
-
|
|
|
153 |
if pred:
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
157 |
has_leuko, confidence = run_leukocoria_prediction(iris_crop)
|
158 |
flags[side] = has_leuko
|
159 |
else:
|
160 |
flags[side] = None
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
return JSONResponse(content={
|
170 |
"leukocoria": flags,
|
171 |
-
"warnings": []
|
172 |
-
"two_eyes": eye_images_b64,
|
173 |
-
"analyzed_image": analyzed_image_b64
|
174 |
})
|
|
|
175 |
finally:
|
176 |
os.remove(temp_image_path)
|
177 |
|
178 |
-
# --- 4.
|
179 |
def gradio_wrapper(image_array):
|
180 |
-
"""A wrapper function to call our own FastAPI endpoint from the Gradio UI."""
|
181 |
try:
|
182 |
pil_image = Image.fromarray(image_array)
|
183 |
with io.BytesIO() as buffer:
|
184 |
pil_image.save(buffer, format="JPEG")
|
185 |
files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')}
|
186 |
-
# The URL points to the local FastAPI server running within the Hugging Face Space
|
187 |
response = requests.post("http://127.0.0.1:7860/detect/", files=files)
|
188 |
|
189 |
-
|
190 |
-
return response.json()
|
191 |
-
else:
|
192 |
-
return {"error": f"API Error {response.status_code}", "details": response.text}
|
193 |
except Exception as e:
|
194 |
return {"error": str(e)}
|
195 |
|
196 |
gradio_ui = gr.Interface(
|
197 |
fn=gradio_wrapper,
|
198 |
-
inputs=gr.Image(type="numpy", label="Upload an eye image
|
199 |
outputs=gr.JSON(label="Analysis Results"),
|
200 |
title="LeukoLook Eye Detector",
|
201 |
-
description="
|
|
|
202 |
|
203 |
app = gr.mount_gradio_app(app, gradio_ui, path="/")
|
204 |
|
205 |
-
# --- 5. Run
|
206 |
if __name__ == "__main__":
|
207 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
# app.py
|
2 |
+
# Adapted to follow the logic from the provided Django api/views.py
|
3 |
import os
|
4 |
import cv2
|
5 |
import tempfile
|
6 |
import numpy as np
|
7 |
import uvicorn
|
|
|
|
|
8 |
import base64
|
9 |
from PIL import Image
|
10 |
from inference_sdk import InferenceHTTPClient
|
|
|
15 |
import gradio as gr
|
16 |
|
17 |
# --- 1. Configuration and Model Loading ---
|
18 |
+
# Constants from the new Django logic
|
19 |
+
MAX_INFER_DIM = 1024
|
20 |
+
ENHANCED_SIZE = (224, 224)
|
21 |
|
22 |
+
# Roboflow and TF Model setup
|
23 |
+
ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
|
24 |
CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
|
25 |
CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
|
26 |
CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
|
|
|
34 |
print(f"--- FATAL ERROR: COULD NOT LOAD LEUKOCORIA MODEL: {e} ---")
|
35 |
raise RuntimeError(f"Could not load leukocoria model: {e}")
|
36 |
|
37 |
+
# --- 2. Helper Functions (Adapted from Django views.py) ---
|
38 |
|
39 |
+
def enhance_image_unsharp_mask(image, strength=0.5, radius=5):
|
40 |
+
"""Enhances image using unsharp masking."""
|
41 |
+
blur = cv2.GaussianBlur(image, (radius, radius), 0)
|
42 |
+
return cv2.addWeighted(image, 1.0 + strength, blur, -strength, 0)
|
43 |
|
44 |
def detect_faces_roboflow(image_path):
|
45 |
+
"""Detects faces using Roboflow."""
|
46 |
return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", [])
|
47 |
|
48 |
+
def detect_eyes_roboflow(image_path):
|
49 |
+
"""
|
50 |
+
Detects eyes, resizing the image if necessary for inference,
|
51 |
+
then scales coordinates back to the original image size.
|
52 |
+
"""
|
53 |
+
raw_image = cv2.imread(image_path)
|
54 |
+
if raw_image is None:
|
55 |
+
return None, []
|
56 |
+
|
57 |
+
h, w = raw_image.shape[:2]
|
58 |
+
scale = min(1.0, MAX_INFER_DIM / max(h, w))
|
59 |
+
|
60 |
+
# Use a temporary file for inference if resizing is needed
|
61 |
+
if scale < 1.0:
|
62 |
+
small_image = cv2.resize(raw_image, (int(w*scale), int(h*scale)))
|
63 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
64 |
+
cv2.imwrite(tmp.name, small_image)
|
65 |
+
infer_path = tmp.name
|
66 |
+
else:
|
67 |
+
infer_path = image_path
|
68 |
+
|
69 |
try:
|
70 |
+
resp = CLIENT_EYES.infer(infer_path, model_id="eye-detection-kso3d/3")
|
71 |
+
finally:
|
72 |
+
# Clean up temp file if one was created
|
73 |
+
if scale < 1.0 and os.path.exists(infer_path):
|
74 |
+
os.remove(infer_path)
|
75 |
+
|
76 |
+
crops = []
|
77 |
+
for p in resp.get("predictions", []):
|
78 |
+
# Scale coordinates back to original image dimensions
|
79 |
+
cx, cy = p["x"] / scale, p["y"] / scale
|
80 |
+
bw, bh = p["width"] / scale, p["height"] / scale
|
81 |
+
|
82 |
+
# Crop from the original raw image
|
83 |
+
x1 = int(cx - bw / 2)
|
84 |
+
y1 = int(cy - bh / 2)
|
85 |
+
x2 = int(cx + bw / 2)
|
86 |
+
y2 = int(cy + bh / 2)
|
87 |
+
|
88 |
+
crop = raw_image[y1:y2, x1:x2]
|
89 |
+
if crop.size > 0:
|
90 |
+
crops.append({"coords": (x1, y1, x2, y2), "image": crop})
|
91 |
+
|
92 |
+
return raw_image, crops
|
93 |
|
94 |
def get_largest_iris_prediction(eye_crop):
|
95 |
+
"""Finds the largest iris in an eye crop."""
|
96 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
|
|
97 |
cv2.imwrite(tmp.name, eye_crop)
|
98 |
+
temp_path = tmp.name
|
99 |
try:
|
100 |
+
resp = CLIENT_IRIS.infer(temp_path, model_id="iris_120_set/7")
|
101 |
preds = resp.get("predictions", [])
|
102 |
return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None
|
103 |
finally:
|
104 |
+
os.remove(temp_path)
|
105 |
|
106 |
def run_leukocoria_prediction(iris_crop):
|
107 |
+
"""Runs the loaded TensorFlow model on an iris crop."""
|
108 |
+
# The logic from views.py is now directly in the TF model call
|
109 |
+
enh = enhance_image_unsharp_mask(iris_crop)
|
110 |
+
enh_rs = cv2.resize(enh, ENHANCED_SIZE)
|
111 |
+
|
112 |
+
img_array = np.array(enh_rs) / 255.0
|
|
|
113 |
img_array = np.expand_dims(img_array, axis=0)
|
114 |
+
|
115 |
prediction = leuko_model.predict(img_array)
|
116 |
confidence = float(prediction[0][0])
|
117 |
has_leuko = confidence > 0.5
|
118 |
return has_leuko, confidence
|
119 |
|
120 |
+
def to_base64(image):
|
121 |
+
"""Converts a CV2 image to a base64 string."""
|
122 |
+
_, buffer = cv2.imencode(".jpg", image)
|
123 |
+
return "data:image/jpeg;base64," + base64.b64encode(buffer).decode()
|
124 |
+
|
125 |
# --- 3. FastAPI Application ---
|
126 |
app = FastAPI()
|
127 |
|
128 |
@app.post("/detect/")
|
129 |
async def full_detection_pipeline(image: UploadFile = File(...)):
|
130 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
131 |
+
tmp.write(await image.read())
|
|
|
132 |
temp_image_path = tmp.name
|
133 |
+
|
134 |
try:
|
135 |
+
# Step 1: Face Check
|
136 |
+
if not detect_faces_roboflow(temp_image_path):
|
137 |
+
return JSONResponse(status_code=200, content={"warnings": ["No face detected."]})
|
138 |
+
|
139 |
+
# Step 2: Eye Detection
|
140 |
+
raw_image, eye_crops = detect_eyes_roboflow(temp_image_path)
|
141 |
if raw_image is None:
|
142 |
return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."})
|
143 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
if len(eye_crops) != 2:
|
145 |
+
return JSONResponse(status_code=200, content={
|
146 |
+
"analyzed_image": to_base64(raw_image),
|
147 |
+
"warnings": ["Exactly two eyes not detected."]
|
148 |
+
})
|
149 |
+
|
150 |
+
# Step 3: Process Eyes with NEW Labeling Logic
|
151 |
+
sorted_eyes = sorted(eye_crops, key=lambda e: e["coords"][0])
|
152 |
+
images_b64 = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
flags = {}
|
154 |
+
|
155 |
+
# This new loop labels the left-most eye as "left" and right-most as "right"
|
156 |
+
for side, eye_info in zip(("left", "right"), sorted_eyes):
|
157 |
+
eye_img = eye_info["image"]
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
# Iris detection and Leukocoria prediction
|
160 |
+
pred = get_largest_iris_prediction(eye_img)
|
161 |
if pred:
|
162 |
+
cx, cy, w, h = pred["x"], pred["y"], pred["width"], pred["height"]
|
163 |
+
x1, y1 = int(cx - w / 2), int(cy - h / 2)
|
164 |
+
x2, y2 = int(cx + w / 2), int(cy + h / 2)
|
165 |
+
|
166 |
+
iris_crop = eye_img[y1:y2, x1:x2]
|
167 |
+
|
168 |
has_leuko, confidence = run_leukocoria_prediction(iris_crop)
|
169 |
flags[side] = has_leuko
|
170 |
else:
|
171 |
flags[side] = None
|
172 |
+
|
173 |
+
images_b64[side] = to_base64(eye_img)
|
174 |
+
|
175 |
+
# Step 4: Prepare and return the final response
|
176 |
+
return JSONResponse(status_code=200, content={
|
177 |
+
"analyzed_image": to_base64(raw_image),
|
178 |
+
"two_eyes": images_b64,
|
|
|
|
|
179 |
"leukocoria": flags,
|
180 |
+
"warnings": []
|
|
|
|
|
181 |
})
|
182 |
+
|
183 |
finally:
|
184 |
os.remove(temp_image_path)
|
185 |
|
186 |
+
# --- 4. Gradio UI (for simple testing) ---
|
187 |
def gradio_wrapper(image_array):
|
|
|
188 |
try:
|
189 |
pil_image = Image.fromarray(image_array)
|
190 |
with io.BytesIO() as buffer:
|
191 |
pil_image.save(buffer, format="JPEG")
|
192 |
files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')}
|
|
|
193 |
response = requests.post("http://127.0.0.1:7860/detect/", files=files)
|
194 |
|
195 |
+
return response.json()
|
|
|
|
|
|
|
196 |
except Exception as e:
|
197 |
return {"error": str(e)}
|
198 |
|
199 |
gradio_ui = gr.Interface(
|
200 |
fn=gradio_wrapper,
|
201 |
+
inputs=gr.Image(type="numpy", label="Upload an eye image"),
|
202 |
outputs=gr.JSON(label="Analysis Results"),
|
203 |
title="LeukoLook Eye Detector",
|
204 |
+
description="Demonstration of the full detection pipeline."
|
205 |
+
)
|
206 |
|
207 |
app = gr.mount_gradio_app(app, gradio_ui, path="/")
|
208 |
|
209 |
+
# --- 5. Run Server ---
|
210 |
if __name__ == "__main__":
|
211 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|