File size: 5,725 Bytes
e88b390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn import datasets
from sklearn.model_selection import train_test_split

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
)
model_card = f"""
## Description

**Gradient boosting** is a machine learning technique that combines several regression trees to create a powerful model in an iterative manner. 
**Early stopping** is a technique used in **gradient boosting** to determine the least number of iterations required to create a model that generalizes well to new data. 
It involves specifying a validation set and using it to evaluate the model after each stage of tree building. 
The process is continued until the model's scores do not improve for a specified number of stages. 
Using early stopping can significantly reduce training time, memory usage, and prediction latency while achieving almost the same accuracy as a model built without early stopping using many more estimators.
You can play around with different ``number of samples`` and ``number of new estimators`` to see the effect

## Dataset

Iris dataset, Classification dataset, Hastie dataset
"""


def do_train(n_samples, n_estimators, progress=gr.Progress()):

    data_list = [
      datasets.load_iris(return_X_y=True),
      datasets.make_classification(n_samples=n_samples, random_state=0),
      datasets.make_hastie_10_2(n_samples=n_samples, random_state=0),
    ]
    names = ["Iris Data", "Classification Data", "Hastie Data"]

    n_gb = []
    score_gb = []
    time_gb = []
    n_gbes = []
    score_gbes = []
    time_gbes = []

    for X, y in progress.tqdm(data_list):
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.2, random_state=0
        )
        # We specify that if the scores don't improve by at least 0.01 for the last
        # 10 stages, stop fitting additional stages
        gbes = ensemble.GradientBoostingClassifier(
            n_estimators=n_estimators,
            validation_fraction=0.2,
            n_iter_no_change=5,
            tol=0.01,
            random_state=0,
        )
        gb = ensemble.GradientBoostingClassifier(n_estimators=n_estimators, random_state=0)
        start = time.time()
        gb.fit(X_train, y_train)
        time_gb.append(time.time() - start)

        start = time.time()
        gbes.fit(X_train, y_train)
        time_gbes.append(time.time() - start)

        score_gb.append(gb.score(X_test, y_test))
        score_gbes.append(gbes.score(X_test, y_test))

        n_gb.append(gb.n_estimators_)
        n_gbes.append(gbes.n_estimators_)

    bar_width = 0.2
    n = len(data_list)
    index = np.arange(0, n * bar_width, bar_width) * 2.5
    index = index[0:n]

    fig1, axes1 = plt.subplots(figsize=(9, 5))

    bar1 = axes1.bar(
        index, score_gb, bar_width, label="Without early stopping", color="crimson"
    )
    bar2 = axes1.bar(
        index + bar_width, score_gbes, bar_width, label="With early stopping", color="coral"
    )
    axes1.set_xticks(index + bar_width, names);
    axes1.set_yticks(np.arange(0, 1.3, 0.1));

    def autolabel(ax, rects, n_estimators):
        """
        Attach a text label above each bar displaying n_estimators of each model
        """
        for i, rect in enumerate(rects):
            ax.text(
                rect.get_x() + rect.get_width() / 2.0,
                1.05 * rect.get_height(),
                "n_est=%d" % n_estimators[i],
                ha="center",
                va="bottom",
            )
    autolabel(axes1, bar1, n_gb)
    autolabel(axes1, bar2, n_gbes)
    plt.xlabel("Datasets")
    plt.ylabel("Test score")

    axes1.set_xlabel("Datasets")
    axes1.set_ylabel("Test score")
    axes1.set_ylim([0, 1.3])
    axes1.legend(loc="best")
    axes1.grid(True)


    fig2, axes2 = plt.subplots(figsize=(9, 5))

    bar1 = axes2.bar(
        index, time_gb, bar_width, label="Without early stopping", color="crimson"
    )
    bar2 = axes2.bar(
        index + bar_width, time_gbes, bar_width, label="With early stopping", color="coral"
    )

    max_y = np.amax(np.maximum(time_gb, time_gbes))

    axes2.set_xticks(index + bar_width, names)
    axes2.set_yticks(np.linspace(0, 1.3 * max_y, 13))

    autolabel(axes2, bar1, n_gb)
    autolabel(axes2, bar2, n_gbes)

    axes2.set_ylim([0, 1.3 * max_y])
    axes2.legend(loc="best")
    axes2.grid(True)

    axes2.set_xlabel("Datasets")
    axes2.set_ylabel("Fit Time")


    return fig1, fig2



with gr.Blocks(theme=theme) as demo:
    gr.Markdown('''
            <div>
            <h1 style='text-align: center'>Early stopping of Gradient Boosting</h1>
            </div>
        ''')
    gr.Markdown(model_card)
    gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_early_stopping.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-early-stopping-py\">scikit-learn</a>")
    n_samples = gr.Slider(minimum=500, maximum=10000, step=500, value=1000, label="Number of samples")
    n_estimators = gr.Slider(minimum=50, maximum=300, step=50, value=100, label="Number of estimators")
    with gr.Row():
        with gr.Column():
            plot1 = gr.Plot(label="Test score")
        with gr.Column():
            plot2 = gr.Plot(label="Running time")

    n_samples.change(fn=do_train, inputs=[n_samples, n_estimators], outputs=[plot1, plot2])
    n_estimators.change(fn=do_train, inputs=[n_samples, n_estimators], outputs=[plot1, plot2])

demo.launch(enable_queue=True)