File size: 5,725 Bytes
e88b390 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn import ensemble
from sklearn import datasets
from sklearn.model_selection import train_test_split
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
model_card = f"""
## Description
**Gradient boosting** is a machine learning technique that combines several regression trees to create a powerful model in an iterative manner.
**Early stopping** is a technique used in **gradient boosting** to determine the least number of iterations required to create a model that generalizes well to new data.
It involves specifying a validation set and using it to evaluate the model after each stage of tree building.
The process is continued until the model's scores do not improve for a specified number of stages.
Using early stopping can significantly reduce training time, memory usage, and prediction latency while achieving almost the same accuracy as a model built without early stopping using many more estimators.
You can play around with different ``number of samples`` and ``number of new estimators`` to see the effect
## Dataset
Iris dataset, Classification dataset, Hastie dataset
"""
def do_train(n_samples, n_estimators, progress=gr.Progress()):
data_list = [
datasets.load_iris(return_X_y=True),
datasets.make_classification(n_samples=n_samples, random_state=0),
datasets.make_hastie_10_2(n_samples=n_samples, random_state=0),
]
names = ["Iris Data", "Classification Data", "Hastie Data"]
n_gb = []
score_gb = []
time_gb = []
n_gbes = []
score_gbes = []
time_gbes = []
for X, y in progress.tqdm(data_list):
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=0
)
# We specify that if the scores don't improve by at least 0.01 for the last
# 10 stages, stop fitting additional stages
gbes = ensemble.GradientBoostingClassifier(
n_estimators=n_estimators,
validation_fraction=0.2,
n_iter_no_change=5,
tol=0.01,
random_state=0,
)
gb = ensemble.GradientBoostingClassifier(n_estimators=n_estimators, random_state=0)
start = time.time()
gb.fit(X_train, y_train)
time_gb.append(time.time() - start)
start = time.time()
gbes.fit(X_train, y_train)
time_gbes.append(time.time() - start)
score_gb.append(gb.score(X_test, y_test))
score_gbes.append(gbes.score(X_test, y_test))
n_gb.append(gb.n_estimators_)
n_gbes.append(gbes.n_estimators_)
bar_width = 0.2
n = len(data_list)
index = np.arange(0, n * bar_width, bar_width) * 2.5
index = index[0:n]
fig1, axes1 = plt.subplots(figsize=(9, 5))
bar1 = axes1.bar(
index, score_gb, bar_width, label="Without early stopping", color="crimson"
)
bar2 = axes1.bar(
index + bar_width, score_gbes, bar_width, label="With early stopping", color="coral"
)
axes1.set_xticks(index + bar_width, names);
axes1.set_yticks(np.arange(0, 1.3, 0.1));
def autolabel(ax, rects, n_estimators):
"""
Attach a text label above each bar displaying n_estimators of each model
"""
for i, rect in enumerate(rects):
ax.text(
rect.get_x() + rect.get_width() / 2.0,
1.05 * rect.get_height(),
"n_est=%d" % n_estimators[i],
ha="center",
va="bottom",
)
autolabel(axes1, bar1, n_gb)
autolabel(axes1, bar2, n_gbes)
plt.xlabel("Datasets")
plt.ylabel("Test score")
axes1.set_xlabel("Datasets")
axes1.set_ylabel("Test score")
axes1.set_ylim([0, 1.3])
axes1.legend(loc="best")
axes1.grid(True)
fig2, axes2 = plt.subplots(figsize=(9, 5))
bar1 = axes2.bar(
index, time_gb, bar_width, label="Without early stopping", color="crimson"
)
bar2 = axes2.bar(
index + bar_width, time_gbes, bar_width, label="With early stopping", color="coral"
)
max_y = np.amax(np.maximum(time_gb, time_gbes))
axes2.set_xticks(index + bar_width, names)
axes2.set_yticks(np.linspace(0, 1.3 * max_y, 13))
autolabel(axes2, bar1, n_gb)
autolabel(axes2, bar2, n_gbes)
axes2.set_ylim([0, 1.3 * max_y])
axes2.legend(loc="best")
axes2.grid(True)
axes2.set_xlabel("Datasets")
axes2.set_ylabel("Fit Time")
return fig1, fig2
with gr.Blocks(theme=theme) as demo:
gr.Markdown('''
<div>
<h1 style='text-align: center'>Early stopping of Gradient Boosting</h1>
</div>
''')
gr.Markdown(model_card)
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_early_stopping.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-early-stopping-py\">scikit-learn</a>")
n_samples = gr.Slider(minimum=500, maximum=10000, step=500, value=1000, label="Number of samples")
n_estimators = gr.Slider(minimum=50, maximum=300, step=50, value=100, label="Number of estimators")
with gr.Row():
with gr.Column():
plot1 = gr.Plot(label="Test score")
with gr.Column():
plot2 = gr.Plot(label="Running time")
n_samples.change(fn=do_train, inputs=[n_samples, n_estimators], outputs=[plot1, plot2])
n_estimators.change(fn=do_train, inputs=[n_samples, n_estimators], outputs=[plot1, plot2])
demo.launch(enable_queue=True) |