File size: 10,128 Bytes
1e5728b
 
c100c37
 
1e5728b
c100c37
1e5728b
c100c37
 
 
 
 
 
1e5728b
 
 
 
 
 
c100c37
 
1e5728b
 
c100c37
1e5728b
 
c100c37
1e5728b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c100c37
 
1e5728b
 
c100c37
 
 
 
 
1e5728b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c100c37
1e5728b
c100c37
1e5728b
c100c37
1e5728b
 
 
c100c37
1e5728b
 
c100c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e5728b
 
c100c37
 
 
 
 
 
 
1e5728b
 
 
 
 
 
 
 
 
c100c37
1e5728b
 
c100c37
1e5728b
c100c37
1e5728b
c100c37
1e5728b
 
 
c100c37
1e5728b
 
c100c37
 
1e5728b
 
 
 
c100c37
1e5728b
 
c100c37
1e5728b
c100c37
 
 
 
 
 
1e5728b
c100c37
 
 
 
1e5728b
c100c37
1e5728b
c100c37
 
 
 
 
 
 
 
1e5728b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import gradio as gr
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from sklearn.kernel_approximation import Nystroem
from sklearn.linear_model import SGDOneClassSVM
from sklearn.pipeline import make_pipeline
from sklearn.svm import OneClassSVM

md_description = """
This example shows how to approximate the solution of [sklearn.svm.OneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) in the case of an RBF kernel with [sklearn.linear_model.SGDOneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM), a Stochastic Gradient Descent (SGD) version of the One-Class SVM. A kernel approximation is first used in order to apply [sklearn.linear_model.SGDOneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) which implements a linear One-Class SVM using SGD.
Note that [sklearn.linear_model.SGDOneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) scales linearly with the number of samples whereas the complexity of a kernelized [sklearn.svm.OneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) is at best quadratic with respect to the number of samples. It is not the purpose of this example to illustrate the benefits of such an approximation in terms of computation time but rather to show that we obtain similar results on a toy dataset.
"""

font = {"weight": "normal", "size": 15}

matplotlib.rc("font", **font)

random_state = 42
rng = np.random.RandomState(random_state)
# rng = np.random.default_rng(random_state)

# Generate train data
X = 0.3 * rng.randn(500, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))

xx, yy = np.meshgrid(np.linspace(-4.5, 4.5, 50), np.linspace(-4.5, 4.5, 50))

# OCSVM hyperparameters
# nu = 0.05
# gamma = 2.0


def make_regression(nu, gamma):
    clf = OneClassSVM(gamma=gamma, kernel="rbf", nu=nu)
    clf.fit(X_train)
    y_pred_train = clf.predict(X_train)
    y_pred_test = clf.predict(X_test)
    y_pred_outliers = clf.predict(X_outliers)
    n_error_train = y_pred_train[y_pred_train == -1].size
    n_error_test = y_pred_test[y_pred_test == -1].size
    n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size

    Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    # Fit the One-Class SVM using a kernel approximation and SGD
    transform = Nystroem(gamma=gamma, random_state=random_state)
    clf_sgd = SGDOneClassSVM(
        nu=nu, shuffle=True, fit_intercept=True, random_state=random_state, tol=1e-4
    )
    pipe_sgd = make_pipeline(transform, clf_sgd)
    pipe_sgd.fit(X_train)
    y_pred_train_sgd = pipe_sgd.predict(X_train)
    y_pred_test_sgd = pipe_sgd.predict(X_test)
    y_pred_outliers_sgd = pipe_sgd.predict(X_outliers)
    n_error_train_sgd = y_pred_train_sgd[y_pred_train_sgd == -1].size
    n_error_test_sgd = y_pred_test_sgd[y_pred_test_sgd == -1].size
    n_error_outliers_sgd = y_pred_outliers_sgd[y_pred_outliers_sgd == 1].size

    Z_sgd = pipe_sgd.decision_function(np.c_[xx.ravel(), yy.ravel()])
    Z_sgd = Z_sgd.reshape(xx.shape)

    def make_plot(title, curr_z):
        fig = plt.figure(figsize=(9, 6))
        ax = fig.add_subplot(111)

        ax.set_title(title)
        ax.contourf(xx, yy, curr_z, levels=np.linspace(curr_z.min(), 0, 7), cmap=plt.cm.PuBu)
        a = ax.contour(xx, yy, curr_z, levels=[0], linewidths=2, colors="darkred")
        ax.contourf(xx, yy, curr_z, levels=[0, curr_z.max()], colors="palevioletred")

        s = 20
        b1 = ax.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
        b2 = ax.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k")
        c = ax.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k")
        ax.axis("tight")
        ax.set_xlim((-4.5, 4.5))
        ax.set_ylim((-4.5, 4.5))
        ax.legend(
            [a.collections[0], b1, b2, c],
            [
                "learned frontier",
                "training observations",
                "new regular observations",
                "new abnormal observations",
            ],
            loc="upper left",
        )
        ax.set_xlabel(
            "error train: %d/%d; errors novel regular: %d/%d; errors novel abnormal: %d/%d"
            % (
                n_error_train_sgd,
                X_train.shape[0],
                n_error_test_sgd,
                X_test.shape[0],
                n_error_outliers_sgd,
                X_outliers.shape[0],
            )
        )

        return fig

    return (
        make_plot("One Class SVM", Z),
        make_plot("Online One-Class SVM", Z_sgd),
        make_example(nu, gamma),
    )


def make_example(nu, gamma):
    return f"""
    With the following code you can reproduce this example with the current values of the sliders and the same data in a notebook:

    ```python
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib
    from sklearn.svm import OneClassSVM
    from sklearn.linear_model import SGDOneClassSVM
    from sklearn.kernel_approximation import Nystroem
    from sklearn.pipeline import make_pipeline

    font = {{"weight": "normal", "size": 15}}

    matplotlib.rc("font", **font)

    rng = np.random.RandomState(random_state)

    # Generate train data
    X = 0.3 * rng.randn(500, 2)
    X_train = np.r_[X + 2, X - 2]
    # Generate some regular novel observations
    X = 0.3 * rng.randn(20, 2)
    X_test = np.r_[X + 2, X - 2]
    # Generate some abnormal novel observations
    X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))

    xx, yy = np.meshgrid(np.linspace(-4.5, 4.5, 50), np.linspace(-4.5, 4.5, 50))

    # OCSVM hyperparameters
    nu = {nu}
    gamma = {gamma}

    # Fit the One-Class SVM
    clf = OneClassSVM(gamma=gamma, kernel="rbf", nu=nu)
    clf.fit(X_train)
    y_pred_train = clf.predict(X_train)
    y_pred_test = clf.predict(X_test)
    y_pred_outliers = clf.predict(X_outliers)
    n_error_train = y_pred_train[y_pred_train == -1].size
    n_error_test = y_pred_test[y_pred_test == -1].size
    n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size

    Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)


    # Fit the One-Class SVM using a kernel approximation and SGD
    transform = Nystroem(gamma=gamma, random_state=random_state)
    clf_sgd = SGDOneClassSVM(
        nu=nu, shuffle=True, fit_intercept=True, random_state=random_state, tol=1e-4
    )
    pipe_sgd = make_pipeline(transform, clf_sgd)
    pipe_sgd.fit(X_train)
    y_pred_train_sgd = pipe_sgd.predict(X_train)
    y_pred_test_sgd = pipe_sgd.predict(X_test)
    y_pred_outliers_sgd = pipe_sgd.predict(X_outliers)
    n_error_train_sgd = y_pred_train_sgd[y_pred_train_sgd == -1].size
    n_error_test_sgd = y_pred_test_sgd[y_pred_test_sgd == -1].size
    n_error_outliers_sgd = y_pred_outliers_sgd[y_pred_outliers_sgd == 1].size

    Z_sgd = pipe_sgd.decision_function(np.c_[xx.ravel(), yy.ravel()])
    Z_sgd = Z_sgd.reshape(xx.shape)


    # plot the level sets of the decision function
    def make_plot(Z_curr, title):
        plt.figure(figsize=(9, 6))
        plt.title(title)
        plt.contourf(xx, yy, Z_curr, levels=np.linspace(Z_curr.min(), 0, 7), cmap=plt.cm.PuBu)
        a = plt.contour(xx, yy, Z_curr, levels=[0], linewidths=2, colors="darkred")
        plt.contourf(xx, yy, Z_curr, levels=[0, Z_curr.max()], colors="palevioletred")

        s = 20
        b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
        b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k")
        c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k")
        plt.axis("tight")
        plt.xlim((-4.5, 4.5))
        plt.ylim((-4.5, 4.5))
        plt.legend(
            [a.collections[0], b1, b2, c],
            [
                "learned frontier",
                "training observations",
                "new regular observations",
                "new abnormal observations",
            ],
            loc="upper left",
        )
        plt.xlabel(
            "error train: %d/%d; errors novel regular: %d/%d; errors novel abnormal: %d/%d"
            % (
                n_error_train,
                X_train.shape[0],
                n_error_test,
                X_test.shape[0],
                n_error_outliers,
                X_outliers.shape[0],
            )
        )
        plt.show()


    make_plot(Z, "One-Class SVM")
    make_plot(Z_sgd, "Online One-Class SVM")

    ```
    """


with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("# One-Class SVM versus One-Class SVM using Stochastic Gradient Descent")
    with gr.Row():
        with gr.Column():
            gr.Markdown(md_description)
        with gr.Column():
            slider_nu = gr.Slider(minimum=0.01, maximum=1, label="Nu", step=0.025, value=0.05)
            slider_gamma = gr.Slider(minimum=0.1, maximum=3, label="Gamma", step=0.1, value=2.0)
            button = gr.Button("Generate")
    with gr.Row():
        with gr.Column():
            plot1 = gr.Plot(label="Output")
        with gr.Column():
            plot2 = gr.Plot(label="Output")
    with gr.Row():
        example = gr.Markdown("")

    slider_nu.change(
        fn=make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example]
    )
    slider_gamma.change(
        fn=make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example]
    )
    button.click(make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example])
    demo.load(make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example])

demo.launch()