File size: 2,957 Bytes
571eb00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score

plt.switch_backend("agg")

def true_fn(X):
    return np.cos(1.5 * np.pi * X)


def modelData(n_samples: int, degree: int, cv: int) -> "plt.Figure":
    """
    This function demonstrate the principle of overfitting vs underfitting by
    modeling a dataset using Linear Regression.

    :param n_samples: the number of samples required in the data.
    :param degree: the number of degrees for the polynomial features.

    :returns: the matplotlib figures
    """

    X = np.sort(np.random.rand(n_samples))
    y = true_fn(X) + np.random.randn(n_samples) * .1

    fig, ax = plt.subplots(1, 1, figsize=(24, 15))

    poly_feats = PolynomialFeatures(degree=degree, include_bias=False)
    model = LinearRegression()

    pipeline = Pipeline([
        ("polynomial_feats", poly_feats),
        ("lr", model)
    ])

    pipeline.fit(X[:, np.newaxis], y)
    scores = cross_val_score(
        pipeline, X[:, np.newaxis], y, scoring="neg_mean_squared_error", cv=cv
    )

    X_test = np.linspace(0, 1, 1000)
    
    ax.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), "--", linewidth=2.5, color="#C73E1D", label="Model")
    ax.plot(X_test, true_fn(X_test), linewidth=2.5, color="#2E86AB", label="True function")
    ax.scatter(X, y, s=20, alpha=.75, edgecolors="#3B1F2B", label="Samples")
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_xticks(())
    ax.set_yticks(())
    ax.set_xlim((0, 1))
    ax.set_ylim((-2, 2))
    ax.legend(loc="best")
    ax.set_title(f"Degree : {degree} \n MSE: {-scores.mean():.2e}(+/- {scores.std():.2e})")

    return fig


with gr.Blocks() as demo:

    gr.Markdown(""" 
    # Underfitting vs Overfitting

    This space is a re-implementation of the original scikit-learn docs [Underfitting vs Overfitting](https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html#sphx-glr-auto-examples-model-selection-plot-underfitting-overfitting-py)
    In this space you can vary the sliders to get a picture of what an **underfitted** model looks like and what an **overfitted** model looks like.
    If you want more details you can always head onto the scikit-learn doc mentioned above. 

    Have fun enjoying the tool 🤗
    """)
    
    n_samples = gr.Slider(30, 10_000, label="n_samples", info="number of samples", step=1, value=100)
    degree = gr.Slider(1, 20, label="degree", info="the polynomial features degree", step=1, value=4)
    cv = gr.Slider(1, 10, label="cv", info="number of cross-validation to run", step=1, value=5)

    output = gr.Plot(label="Plot")

    btn = gr.Button("Show")
    btn.click(fn=modelData, inputs=[n_samples, degree, cv], outputs=output, api_name="overfitunderfit")