|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration |
|
import torch |
|
|
|
|
|
import torch |
|
|
|
chat_tkn = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") |
|
mdl = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") |
|
|
|
def converse(user_input, chat_history=[]): |
|
|
|
user_input_ids = chat_tkn.encode(user_input + chat_tkn.eos_token, return_tensors='pt') |
|
|
|
|
|
bot_input_ids = torch.cat([torch.LongTensor(chat_history), user_input_ids], dim=-1) |
|
|
|
|
|
chat_history = mdl.generate(bot_input_ids, max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist() |
|
print (chat_history) |
|
|
|
|
|
response = chat_tkn.batch_decode(chat_history[0],skip_special_tokens=True) |
|
|
|
print("starting to print response") |
|
print(response) |
|
|
|
|
|
html = "<div class='chatbot'>" |
|
for m, msg in enumerate(response): |
|
cls = "user" if m%2 == 0 else "bot" |
|
print("value of m") |
|
print(m) |
|
print("message") |
|
print (msg) |
|
html += "<div class='msg {}'> {}</div>".format(cls, msg) |
|
html += "</div>" |
|
print(html) |
|
return html, chat_history |
|
|
|
import gradio as gr |
|
|
|
css = """ |
|
.chatbox {display:flex;flex-direction:column} |
|
.msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} |
|
.msg.user {background-color:cornflowerblue;color:white} |
|
.msg.bot {background-color:lightgray;align-self:self-end} |
|
.footer {display:none !important} |
|
""" |
|
|
|
gr.Interface(fn=converse, |
|
theme="default", |
|
inputs=[gr.inputs.Textbox(placeholder="How are you?"), "state"], |
|
outputs=["html", "state"], |
|
css=css).launch() |