chat / app.py
smjain's picture
Update app.py
bad32bd
raw
history blame
1.92 kB
#from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration
import torch
import torch
chat_tkn = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
mdl = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
def converse(user_input, chat_history=[]):
user_input_ids = chat_tkn.encode(user_input + chat_tkn.eos_token, return_tensors='pt')
# create a combined tensor with chat history
bot_input_ids = torch.cat([torch.LongTensor(chat_history), user_input_ids], dim=-1)
# generate a response
chat_history = mdl.generate(bot_input_ids, max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist()
print (chat_history)
# convert the tokens to text, and then split the responses into lines
response = chat_tkn.batch_decode(chat_history[0],skip_special_tokens=True)
#response.remove("")
print("starting to print response")
print(response)
# write some HTML
html = "<div class='chatbot'>"
for m, msg in enumerate(response):
cls = "user" if m%2 == 0 else "bot"
print("value of m")
print(m)
print("message")
print (msg)
html += "<div class='msg {}'> {}</div>".format(cls, msg)
html += "</div>"
print(html)
return html, chat_history
import gradio as gr
css = """
.chatbox {display:flex;flex-direction:column}
.msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
.msg.user {background-color:cornflowerblue;color:white}
.msg.bot {background-color:lightgray;align-self:self-end}
.footer {display:none !important}
"""
gr.Interface(fn=converse,
theme="default",
inputs=[gr.inputs.Textbox(placeholder="How are you?"), "state"],
outputs=["html", "state"],
css=css).launch()