Assignment1 / app.py
smtsead's picture
Update app.py
9323a68 verified
raw
history blame
2.16 kB
# import part
import streamlit as st
from transformers import pipeline
import torch
# function part
# img2text
def img2text(url):
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = image_to_text_model(url)[0]["generated_text"]
# Make the caption simple and fun for kids
fun_caption = f"Look what we found! 🎨 {text}"
return fun_caption
# text2story
def text2story(text):
story_generator = pipeline("text-generation", model="distilgpt2")
# Generate a story with a maximum of 90 words
story = story_generator(text, max_length=90, num_return_sequences=1)[0]["generated_text"]
# Ensure the story does not exceed 90 words
story = " ".join(story.split()[:90]) # Truncate to 90 words
# Make the story simple and fun for kids
fun_story = f"Once upon a time... 🌟 {story}"
return fun_story
# text2audio
def text2audio(story_text):
tts_pipeline = pipeline("text-to-speech", model="espnet/kan-bayashi_ljspeech_vits")
audio_data = tts_pipeline(story_text)
return audio_data
# main part
st.set_page_config(page_title="Story Maker", page_icon="🦜")
st.header("Story Maker: Turn Your Picture into a Story!")
uploaded_file = st.file_uploader("Select an Image...")
if uploaded_file is not None:
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Your Picture", use_container_width=True)
# Stage 1: Image to Text
st.text('✨ Discovering what’s in your picture...')
scenario = img2text(uploaded_file.name)
st.write(f"Here’s what we found: {scenario}")
# Stage 2: Text to Story
st.text('🎭 Creating a fun story for you...')
story = text2story(scenario)
st.write(story)
# Stage 3: Story to Audio data
st.text('🔊 Turning your story into audio...')
audio_data = text2audio(story)
# Play button
if st.button("Play Audio"):
st.audio(audio_data['audio'],
format="audio/wav",
start_time=0,
sample_rate=audio_data['sampling_rate'])