Spaces:
Running
Running
import sys | |
sys.path.append('CodeFormer') | |
import os | |
import cv2 | |
import torch | |
import torch.nn.functional as F | |
import gradio as gr | |
from torchvision.transforms.functional import normalize | |
from basicsr.utils import imwrite, img2tensor, tensor2img | |
from basicsr.utils.download_util import load_file_from_url | |
from facelib.utils.face_restoration_helper import FaceRestoreHelper | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.utils.realesrgan_utils import RealESRGANer | |
from facelib.utils.misc import is_gray | |
from basicsr.utils.registry import ARCH_REGISTRY | |
# Model weight URLs | |
pretrain_model_url = { | |
'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', | |
'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth', | |
'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth', | |
'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth' | |
} | |
load_file_from_url( | |
url='https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', | |
model_dir='CodeFormer/weights/CodeFormer', | |
progress=True | |
) | |
# Download weights if not already present | |
for key, url in pretrain_model_url.items(): | |
file_path = f"CodeFormer/weights/{key}/{url.split('/')[-1]}" | |
if not os.path.exists(file_path): | |
load_file_from_url(url=url, model_dir=os.path.dirname(file_path), progress=True) | |
# Helper functions | |
def imread(img_path): | |
img = cv2.imread(img_path) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
return img | |
def set_realesrgan(): | |
half = torch.cuda.is_available() | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) | |
upsampler = RealESRGANer( | |
scale=2, model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth", | |
model=model, tile=400, tile_pad=40, pre_pad=0, half=half | |
) | |
return upsampler | |
# Model setup | |
upsampler = set_realesrgan() | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
codeformer_net = ARCH_REGISTRY.get("CodeFormer")( | |
dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, | |
connect_list=["32", "64", "128", "256"] | |
).to(device) | |
ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth" | |
checkpoint = torch.load(ckpt_path)["params_ema"] | |
codeformer_net.load_state_dict(checkpoint) | |
codeformer_net.eval() | |
os.makedirs('output', exist_ok=True) | |
# Inference function | |
def inference(image, face_align=True, background_enhance=True, face_upsample=True, upscale=2, codeformer_fidelity=0.5): | |
try: | |
only_center_face = False | |
detection_model = "retinaface_resnet50" | |
# Load image and set parameters | |
img = cv2.imread(str(image), cv2.IMREAD_COLOR) | |
has_aligned = not face_align | |
upscale = min(max(1, int(upscale)), 4) | |
face_helper = FaceRestoreHelper( | |
upscale, face_size=512, crop_ratio=(1, 1), det_model=detection_model, | |
save_ext="png", use_parse=True, device=device | |
) | |
bg_upsampler = upsampler if background_enhance else None | |
face_upsampler = upsampler if face_upsample else None | |
if has_aligned: | |
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
face_helper.is_gray = is_gray(img, threshold=5) | |
face_helper.cropped_faces = [img] | |
else: | |
face_helper.read_image(img) | |
num_det_faces = face_helper.get_face_landmarks_5(only_center_face=only_center_face, resize=640, eye_dist_threshold=5) | |
face_helper.align_warp_face() | |
for cropped_face in face_helper.cropped_faces: | |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) | |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0] | |
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
face_helper.add_restored_face(restored_face.astype("uint8"), cropped_face) | |
restored_img = face_helper.paste_faces_to_input_image( | |
upsample_img=bg_upsampler.enhance(img, outscale=upscale)[0] if bg_upsampler else None, | |
face_upsampler=face_upsampler | |
) | |
save_path = 'output/out.png' | |
imwrite(restored_img, save_path) | |
return cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB) | |
except Exception as error: | |
print('Error during inference:', error) | |
return None | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=inference, | |
inputs=[ | |
gr.Image(type="filepath", label="Input"), | |
gr.Checkbox(value=True, label="Pre_Face_Align"), | |
gr.Checkbox(value=True, label="Background_Enhance"), | |
gr.Checkbox(value=True, label="Face_Upsample"), | |
gr.Number(value=2, label="Rescaling_Factor (up to 4)"), | |
gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity') | |
], | |
outputs=gr.Image(type="numpy", label="Output"), | |
title="CodeFormer: Robust Face Restoration and Enhancement Network" | |
) | |
demo.launch(debug=os.getenv('DEBUG') == '1', share=True) | |