CodeFormer-2 / app.py
soiz's picture
Update app.py
bfb2718 verified
import sys
sys.path.append('CodeFormer')
import os
import cv2
import torch
import torch.nn.functional as F
import gradio as gr
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
from facelib.utils.misc import is_gray
from basicsr.utils.registry import ARCH_REGISTRY
# Model weight URLs
pretrain_model_url = {
'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
}
load_file_from_url(
url='https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
model_dir='CodeFormer/weights/CodeFormer',
progress=True
)
# Download weights if not already present
for key, url in pretrain_model_url.items():
file_path = f"CodeFormer/weights/{key}/{url.split('/')[-1]}"
if not os.path.exists(file_path):
load_file_from_url(url=url, model_dir=os.path.dirname(file_path), progress=True)
# Helper functions
def imread(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def set_realesrgan():
half = torch.cuda.is_available()
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
upsampler = RealESRGANer(
scale=2, model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
model=model, tile=400, tile_pad=40, pre_pad=0, half=half
)
return upsampler
# Model setup
upsampler = set_realesrgan()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
connect_list=["32", "64", "128", "256"]
).to(device)
ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
checkpoint = torch.load(ckpt_path)["params_ema"]
codeformer_net.load_state_dict(checkpoint)
codeformer_net.eval()
os.makedirs('output', exist_ok=True)
# Inference function
def inference(image, face_align=True, background_enhance=True, face_upsample=True, upscale=2, codeformer_fidelity=0.5):
try:
only_center_face = False
detection_model = "retinaface_resnet50"
# Load image and set parameters
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
has_aligned = not face_align
upscale = min(max(1, int(upscale)), 4)
face_helper = FaceRestoreHelper(
upscale, face_size=512, crop_ratio=(1, 1), det_model=detection_model,
save_ext="png", use_parse=True, device=device
)
bg_upsampler = upsampler if background_enhance else None
face_upsampler = upsampler if face_upsample else None
if has_aligned:
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.is_gray = is_gray(img, threshold=5)
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
num_det_faces = face_helper.get_face_landmarks_5(only_center_face=only_center_face, resize=640, eye_dist_threshold=5)
face_helper.align_warp_face()
for cropped_face in face_helper.cropped_faces:
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
with torch.no_grad():
output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
face_helper.add_restored_face(restored_face.astype("uint8"), cropped_face)
restored_img = face_helper.paste_faces_to_input_image(
upsample_img=bg_upsampler.enhance(img, outscale=upscale)[0] if bg_upsampler else None,
face_upsampler=face_upsampler
)
save_path = 'output/out.png'
imwrite(restored_img, save_path)
return cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
except Exception as error:
print('Error during inference:', error)
return None
# Gradio Interface
demo = gr.Interface(
fn=inference,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.Checkbox(value=True, label="Pre_Face_Align"),
gr.Checkbox(value=True, label="Background_Enhance"),
gr.Checkbox(value=True, label="Face_Upsample"),
gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity')
],
outputs=gr.Image(type="numpy", label="Output"),
title="CodeFormer: Robust Face Restoration and Enhancement Network"
)
demo.launch(debug=os.getenv('DEBUG') == '1', share=True)