File size: 10,282 Bytes
d69ad9e
95403ff
 
 
 
 
 
 
 
 
 
08cf01f
 
 
 
 
 
 
 
 
 
 
 
 
95403ff
 
 
 
 
 
 
 
 
 
d69ad9e
95403ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d69ad9e
95403ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d69ad9e
95403ff
 
 
d69ad9e
95403ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9dea45
95403ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d69ad9e
95403ff
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import cv2
import torch
from flask import Flask, request, jsonify, send_file
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
import uuid
import tempfile

app = Flask(__name__)
# ウェイトファイルをダウンロード(存在しない場合)
if not os.path.exists('realesr-general-x4v3.pth'):
    os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
if not os.path.exists('GFPGANv1.2.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
if not os.path.exists('GFPGANv1.3.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
if not os.path.exists('GFPGANv1.4.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
if not os.path.exists('RestoreFormer.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
if not os.path.exists('CodeFormer.pth'):
    os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
# モデルの初期化
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)

os.makedirs('output', exist_ok=True)

@app.route('/api/restore', methods=['POST'])
def restore_image():
    try:
        # リクエストからパラメータを取得
        if 'file' not in request.files:
            return jsonify({'error': 'No file uploaded'}), 400
        
        file = request.files['file']
        version = request.form.get('version', 'v1.4')
        scale = float(request.form.get('scale', 2))
        # weight = float(request.form.get('weight', 50)) / 100  # CodeFormer用のweightパラメータが必要な場合
        
        # 一時ファイルに保存
        temp_dir = tempfile.mkdtemp()
        input_path = os.path.join(temp_dir, file.filename)
        file.save(input_path)
        
        # 画像処理
        extension = os.path.splitext(os.path.basename(str(input_path)))[1]
        img = cv2.imread(input_path, cv2.IMREAD_UNCHANGED)
        
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = 'RGBA'
        elif len(img.shape) == 2:
            img_mode = None
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        else:
            img_mode = None

        h, w = img.shape[0:2]
        if h < 300:
            img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)

        # バージョンに応じてモデルを選択
        if version == 'v1.2':
            face_enhancer = GFPGANer(
                model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'v1.3':
            face_enhancer = GFPGANer(
                model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'v1.4':
            face_enhancer = GFPGANer(
                model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'RestoreFormer':
            face_enhancer = GFPGANer(
                model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'CodeFormer':
            face_enhancer = GFPGANer(
                model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'RealESR-General-x4v3':
            face_enhancer = GFPGANer(
                model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler)

        # 画像を拡張
        _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
        
        # スケール調整
        if scale != 2:
            interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
            h, w = img.shape[0:2]
            output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
        
        # 出力ファイルを保存
        output_filename = f'output_{uuid.uuid4().hex}'
        if img_mode == 'RGBA':
            output_path = os.path.join('output', f'{output_filename}.png')
            cv2.imwrite(output_path, output)
            mimetype = 'image/png'
        else:
            output_path = os.path.join('output', f'{output_filename}.jpg')
            cv2.imwrite(output_path, output)
            mimetype = 'image/jpeg'
        
        # 結果を返す
        return send_file(output_path, mimetype=mimetype, as_attachment=True, download_name=os.path.basename(output_path))
    
    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/')
def index():
    return """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Image Upscaling & Restoration API</title>
        <style>
            body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
            .container { border: 1px solid #ddd; padding: 20px; border-radius: 5px; }
            .form-group { margin-bottom: 15px; }
            label { display: block; margin-bottom: 5px; }
            input, select { width: 100%; padding: 8px; box-sizing: border-box; }
            button { background-color: #4CAF50; color: white; padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; }
            button:hover { background-color: #45a049; }
            #result { margin-top: 20px; }
            #preview { max-width: 100%; margin-top: 10px; }
        </style>
    </head>
    <body>
        <h1>Image Upscaling & Restoration API</h1>
        <div class="container">
            <form id="uploadForm" enctype="multipart/form-data">
                <div class="form-group">
                    <label for="file">Upload Image:</label>
                    <input type="file" id="file" name="file" required>
                </div>
                <div class="form-group">
                    <label for="version">Version:</label>
                    <select id="version" name="version">
                        <option value="v1.2">v1.2</option>
                        <option value="v1.3">v1.3</option>
                        <option value="v1.4" selected>v1.4</option>
                        <option value="RestoreFormer">RestoreFormer</option>
                        <option value="CodeFormer">CodeFormer</option>
                        <option value="RealESR-General-x4v3">RealESR-General-x4v3</option>
                    </select>
                </div>
                <div class="form-group">
                    <label for="scale">Rescaling factor:</label>
                    <input type="number" id="scale" name="scale" value="2" step="0.1" min="1" max="4" required>
                </div>
                <!-- CodeFormer用のweightパラメータが必要な場合 -->
                <!--
                <div class="form-group">
                    <label for="weight">Weight (only for CodeFormer):</label>
                    <input type="range" id="weight" name="weight" min="0" max="100" value="50">
                    <span id="weightValue">50</span>
                </div>
                -->
                <button type="submit">Process Image</button>
            </form>
            
            <div id="result">
                <h3>Result:</h3>
                <div id="outputContainer" style="display: none;">
                    <img id="preview" src="" alt="Processed Image">
                    <a id="downloadLink" href="#" download>Download Image</a>
                </div>
            </div>
        </div>
        
        <script>
            document.getElementById('uploadForm').addEventListener('submit', function(e) {
                e.preventDefault();
                
                const formData = new FormData();
                formData.append('file', document.getElementById('file').files[0]);
                formData.append('version', document.getElementById('version').value);
                formData.append('scale', document.getElementById('scale').value);
                // formData.append('weight', document.getElementById('weight').value); // CodeFormer用
                
                fetch('/api/restore', {
                    method: 'POST',
                    body: formData
                })
                .then(response => {
                    if (!response.ok) {
                        return response.json().then(err => { throw new Error(err.error || 'Unknown error'); });
                    }
                    return response.blob();
                })
                .then(blob => {
                    const url = URL.createObjectURL(blob);
                    const preview = document.getElementById('preview');
                    const downloadLink = document.getElementById('downloadLink');
                    const outputContainer = document.getElementById('outputContainer');
                    
                    preview.src = url;
                    downloadLink.href = url;
                    downloadLink.download = 'restored_' + document.getElementById('file').files[0].name;
                    outputContainer.style.display = 'block';
                })
                .catch(error => {
                    alert('Error: ' + error.message);
                });
            });
            
            // CodeFormer用のweightパラメータが必要な場合
            // document.getElementById('weight').addEventListener('input', function() {
            //     document.getElementById('weightValue').textContent = this.value;
            // });
        </script>
    </body>
    </html>
    """

if __name__ == '__main__':
    
    app.run(host='0.0.0.0', port=5000, debug=True)