Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import torch | |
from flask import Flask, request, jsonify, send_file | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from gfpgan.utils import GFPGANer | |
from realesrgan.utils import RealESRGANer | |
import uuid | |
import tempfile | |
app = Flask(__name__) | |
# ウェイトファイルをダウンロード(存在しない場合) | |
if not os.path.exists('realesr-general-x4v3.pth'): | |
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") | |
if not os.path.exists('GFPGANv1.2.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") | |
if not os.path.exists('GFPGANv1.3.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") | |
if not os.path.exists('GFPGANv1.4.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") | |
if not os.path.exists('RestoreFormer.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .") | |
if not os.path.exists('CodeFormer.pth'): | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .") | |
# モデルの初期化 | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
model_path = 'realesr-general-x4v3.pth' | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
os.makedirs('output', exist_ok=True) | |
def restore_image(): | |
try: | |
# リクエストからパラメータを取得 | |
if 'file' not in request.files: | |
return jsonify({'error': 'No file uploaded'}), 400 | |
file = request.files['file'] | |
version = request.form.get('version', 'v1.4') | |
scale = float(request.form.get('scale', 2)) | |
# weight = float(request.form.get('weight', 50)) / 100 # CodeFormer用のweightパラメータが必要な場合 | |
# 一時ファイルに保存 | |
temp_dir = tempfile.mkdtemp() | |
input_path = os.path.join(temp_dir, file.filename) | |
file.save(input_path) | |
# 画像処理 | |
extension = os.path.splitext(os.path.basename(str(input_path)))[1] | |
img = cv2.imread(input_path, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
elif len(img.shape) == 2: | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
# バージョンに応じてモデルを選択 | |
if version == 'v1.2': | |
face_enhancer = GFPGANer( | |
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) | |
elif version == 'v1.3': | |
face_enhancer = GFPGANer( | |
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) | |
elif version == 'v1.4': | |
face_enhancer = GFPGANer( | |
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) | |
elif version == 'RestoreFormer': | |
face_enhancer = GFPGANer( | |
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler) | |
elif version == 'CodeFormer': | |
face_enhancer = GFPGANer( | |
model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler) | |
elif version == 'RealESR-General-x4v3': | |
face_enhancer = GFPGANer( | |
model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler) | |
# 画像を拡張 | |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
# スケール調整 | |
if scale != 2: | |
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 | |
h, w = img.shape[0:2] | |
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) | |
# 出力ファイルを保存 | |
output_filename = f'output_{uuid.uuid4().hex}' | |
if img_mode == 'RGBA': | |
output_path = os.path.join('output', f'{output_filename}.png') | |
cv2.imwrite(output_path, output) | |
mimetype = 'image/png' | |
else: | |
output_path = os.path.join('output', f'{output_filename}.jpg') | |
cv2.imwrite(output_path, output) | |
mimetype = 'image/jpeg' | |
# 結果を返す | |
return send_file(output_path, mimetype=mimetype, as_attachment=True, download_name=os.path.basename(output_path)) | |
except Exception as e: | |
return jsonify({'error': str(e)}), 500 | |
def index(): | |
return """ | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Image Upscaling & Restoration API</title> | |
<style> | |
body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; } | |
.container { border: 1px solid #ddd; padding: 20px; border-radius: 5px; } | |
.form-group { margin-bottom: 15px; } | |
label { display: block; margin-bottom: 5px; } | |
input, select { width: 100%; padding: 8px; box-sizing: border-box; } | |
button { background-color: #4CAF50; color: white; padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; } | |
button:hover { background-color: #45a049; } | |
#result { margin-top: 20px; } | |
#preview { max-width: 100%; margin-top: 10px; } | |
</style> | |
</head> | |
<body> | |
<h1>Image Upscaling & Restoration API</h1> | |
<div class="container"> | |
<form id="uploadForm" enctype="multipart/form-data"> | |
<div class="form-group"> | |
<label for="file">Upload Image:</label> | |
<input type="file" id="file" name="file" required> | |
</div> | |
<div class="form-group"> | |
<label for="version">Version:</label> | |
<select id="version" name="version"> | |
<option value="v1.2">v1.2</option> | |
<option value="v1.3">v1.3</option> | |
<option value="v1.4" selected>v1.4</option> | |
<option value="RestoreFormer">RestoreFormer</option> | |
<option value="CodeFormer">CodeFormer</option> | |
<option value="RealESR-General-x4v3">RealESR-General-x4v3</option> | |
</select> | |
</div> | |
<div class="form-group"> | |
<label for="scale">Rescaling factor:</label> | |
<input type="number" id="scale" name="scale" value="2" step="0.1" min="1" max="4" required> | |
</div> | |
<!-- CodeFormer用のweightパラメータが必要な場合 --> | |
<!-- | |
<div class="form-group"> | |
<label for="weight">Weight (only for CodeFormer):</label> | |
<input type="range" id="weight" name="weight" min="0" max="100" value="50"> | |
<span id="weightValue">50</span> | |
</div> | |
--> | |
<button type="submit">Process Image</button> | |
</form> | |
<div id="result"> | |
<h3>Result:</h3> | |
<div id="outputContainer" style="display: none;"> | |
<img id="preview" src="" alt="Processed Image"> | |
<a id="downloadLink" href="#" download>Download Image</a> | |
</div> | |
</div> | |
</div> | |
<script> | |
document.getElementById('uploadForm').addEventListener('submit', function(e) { | |
e.preventDefault(); | |
const formData = new FormData(); | |
formData.append('file', document.getElementById('file').files[0]); | |
formData.append('version', document.getElementById('version').value); | |
formData.append('scale', document.getElementById('scale').value); | |
// formData.append('weight', document.getElementById('weight').value); // CodeFormer用 | |
fetch('/api/restore', { | |
method: 'POST', | |
body: formData | |
}) | |
.then(response => { | |
if (!response.ok) { | |
return response.json().then(err => { throw new Error(err.error || 'Unknown error'); }); | |
} | |
return response.blob(); | |
}) | |
.then(blob => { | |
const url = URL.createObjectURL(blob); | |
const preview = document.getElementById('preview'); | |
const downloadLink = document.getElementById('downloadLink'); | |
const outputContainer = document.getElementById('outputContainer'); | |
preview.src = url; | |
downloadLink.href = url; | |
downloadLink.download = 'restored_' + document.getElementById('file').files[0].name; | |
outputContainer.style.display = 'block'; | |
}) | |
.catch(error => { | |
alert('Error: ' + error.message); | |
}); | |
}); | |
// CodeFormer用のweightパラメータが必要な場合 | |
// document.getElementById('weight').addEventListener('input', function() { | |
// document.getElementById('weightValue').textContent = this.value; | |
// }); | |
</script> | |
</body> | |
</html> | |
""" | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=5000, debug=True) |