File size: 16,090 Bytes
5ed81fc
b00d4f1
 
914381e
b00d4f1
 
 
 
914381e
b00d4f1
bde0b19
5ed81fc
914381e
5ed81fc
 
 
 
 
914381e
5ed81fc
 
914381e
 
 
 
 
 
 
 
 
 
66d414f
914381e
 
 
66d414f
914381e
66d414f
914381e
5ed81fc
914381e
 
bde0b19
5ed81fc
 
bde0b19
5ed81fc
 
 
 
 
 
 
 
 
 
 
bde0b19
5ed81fc
 
bde0b19
5ed81fc
 
bde0b19
5ed81fc
 
bde0b19
379bb4d
914381e
 
379bb4d
bde0b19
914381e
 
 
 
 
 
 
 
 
 
5ed81fc
914381e
 
 
 
 
 
 
 
 
 
 
bde0b19
 
914381e
5ed81fc
914381e
 
 
 
 
 
5ed81fc
bde0b19
 
914381e
04fc3c7
 
 
0610402
 
 
 
 
 
 
 
 
 
 
 
 
eda5c65
 
 
cee4a27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0610402
04fc3c7
 
0610402
 
 
 
 
 
 
 
 
 
bf149b3
 
 
0610402
 
 
 
 
 
 
 
 
66d414f
 
 
 
cee4a27
0610402
cee4a27
0610402
 
 
 
 
 
 
d2f22ed
 
 
 
 
 
0610402
 
 
66d414f
 
 
 
 
 
 
 
 
 
 
0610402
 
 
 
 
66d414f
0610402
d2f22ed
 
 
0610402
d2f22ed
 
0610402
 
d2f22ed
 
 
eab2a41
914381e
d2f22ed
914381e
d2f22ed
66d414f
0610402
d2f22ed
0610402
66d414f
0610402
 
 
66d414f
0610402
66d414f
d2f22ed
 
 
66d414f
 
 
 
 
 
d2f22ed
66d414f
0610402
 
d2f22ed
0610402
 
 
 
40f5d74
0610402
 
 
 
 
 
d2f22ed
0610402
 
 
d2f22ed
66d414f
 
0610402
 
 
 
 
 
66d414f
0610402
 
 
 
 
 
 
cee4a27
 
 
 
 
 
 
0610402
 
 
 
 
66d414f
 
 
 
 
eda5c65
 
 
0610402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee4a27
 
 
 
 
0610402
 
 
 
 
914381e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ed81fc
bde0b19
886a7d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import os
import cv2
import torch
from flask import Flask, request, jsonify, send_file, render_template_string
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
import tempfile
import uuid

app = Flask(__name__)

# Initialize models
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)

# Ensure output directory exists
os.makedirs('output', exist_ok=True)

# Download weights if not exists
def download_weights():
    weights = {
        'realesr-general-x4v3.pth': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
        'GFPGANv1.2.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth',
        'GFPGANv1.3.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
        'GFPGANv1.4.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
        'RestoreFormer.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth',
        'CodeFormer.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth'
    }
    
    for weight_file, url in weights.items():
        if not os.path.exists(weight_file):
            os.system(f"wget {url} -O {weight_file}")

download_weights()

def process_image(img_path, version, scale, weight=0.5):
    try:
        extension = os.path.splitext(os.path.basename(str(img_path)))[1]
        img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
        
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = 'RGBA'
        elif len(img.shape) == 2:
            img_mode = None
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        else:
            img_mode = None

        h, w = img.shape[0:2]
        if h < 300:
            img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)

        if version == 'v1.2':
            face_enhancer = GFPGANer(
                model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'v1.3':
            face_enhancer = GFPGANer(
                model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'v1.4':
            face_enhancer = GFPGANer(
                model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'RestoreFormer':
            face_enhancer = GFPGANer(
                model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'CodeFormer':
            face_enhancer = GFPGANer(
                model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
        elif version == 'RealESR-General-x4v3':
            face_enhancer = GFPGANer(
                model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler)

        try:
            if version == 'CodeFormer':
                _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
            else:
                _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
        except RuntimeError as error:
            print('Error', error)
            raise Exception(f"Enhancement error: {str(error)}")

        try:
            if scale != 2:
                interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
                h, w = img.shape[0:2]
                output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
        except Exception as error:
            print('wrong scale input.', error)

        # Save to temporary file
        output_filename = f"output_{uuid.uuid4().hex}.jpg"
        output_path = os.path.join('output', output_filename)
        
        if img_mode == 'RGBA':
            cv2.imwrite(output_path, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
        else:
            cv2.imwrite(output_path, output, [int(cv2.IMWRITE_JPEG_QUALITY), 95])

        return output_path
    except Exception as error:
        print('Global exception', error)
        raise Exception(f"Processing error: {str(error)}")

@app.route('/')
def index():
    return render_template_string('''
<!DOCTYPE html>
<html>
<head>
    <title>Image Upscaling & Restoration API</title>
    <style>
        body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
        .container { border: 1px solid #ddd; padding: 20px; border-radius: 5px; }
        .form-group { margin-bottom: 15px; }
        label { display: block; margin-bottom: 5px; }
        input, select { width: 100%; padding: 8px; box-sizing: border-box; }
        button { background-color: #4CAF50; color: white; padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; }
        button:hover { background-color: #45a049; }
        #result { margin-top: 20px; }
        #preview { max-width: 100%; margin-top: 10px; }
        #apiUsage { background-color: #f5f5f5; padding: 15px; border-radius: 5px; margin-top: 20px; font-family: monospace; white-space: pre-wrap; }
        #apiUsage h3 { margin-top: 0; }
        #formDataPreview { max-height: 200px; overflow-y: auto; margin-bottom: 10px; }
        .code-block { background-color: #f8f8f8; padding: 10px; border-radius: 4px; border-left: 3px solid #4CAF50; }
        .comment { color: #666; font-style: italic; }
        
        .loader {
            width: 48px;
            height: 48px;
            border: 5px solid #4CAF50;
            border-bottom-color: transparent;
            border-radius: 50%;
            display: inline-block;
            box-sizing: border-box;
            animation: rotation 1s linear infinite;
            margin: 20px auto;
            display: none; /* 初期状態では非表示 */
        }

        @keyframes rotation {
            0% {
                transform: rotate(0deg);
            }
            100% {
                transform: rotate(360deg);
            }
        }
    </style>
</head>
<body>
    <h1>Image Upscaling & Restoration API</h1>
    <div class="container">
        <form id="uploadForm" enctype="multipart/form-data">
            <div class="form-group">
                <label for="file">Upload Image:</label>
                <input type="file" id="file" name="file" required>
            </div>
            <div class="form-group">
                <label for="version">Version:</label>
                <select id="version" name="version">
                    <option value="v1.2">GFPGANv1.2</option>
                    <option value="v1.3">GFPGANv1.3</option>
                    <option value="v1.4" selected>GFPGANv1.4</option>
                    <option value="RestoreFormer">RestoreFormer</option>
                    <option value="CodeFormer">CodeFormer</option>
                    <option value="RealESR-General-x4v3">RealESR-General-x4v3</option>
                </select>
            </div>
            <div class="form-group">
                <label for="scale">Rescaling factor:</label>
                <input type="number" id="scale" name="scale" value="2" step="0.1" min="1" max="4" required>
            </div>
            <div class="form-group" id="weightGroup" style="display: none;">
                <label for="weight">CodeFormer Weight (0-1):</label>
                <input type="number" id="weight" name="weight" value="0.5" step="0.1" min="0" max="1">
            </div>
            <button type="submit" id="submitButton">Process Image</button>
        </form>
        <div id="loading" class="loader"></div>
        <div id="result">
            <h3>Result:</h3>
            <div id="outputContainer" style="display: none;">
                <img id="preview" src="" alt="Processed Image">
                <a id="downloadLink" href="#" download>Download Image</a>
            </div>
        </div>
        <div id="apiUsage">
            <h3>API Usage:</h3>
            <div id="fetchCode" class="code-block">
                // JavaScript fetch code will appear here
            </div>
        </div>
    </div>
    
    <script>
        // CodeFormerが選択された時にweightパラメータを表示
        document.getElementById('version').addEventListener('change', function() {
            const weightGroup = document.getElementById('weightGroup');
            if (this.value === 'CodeFormer') {
                weightGroup.style.display = 'block';
            } else {
                weightGroup.style.display = 'none';
            }
            updateApiUsage();
        });

        // フォームの変更を監視してAPI使用例を更新
        function updateApiUsage() {
            const fileInput = document.getElementById('file');
            const version = document.getElementById('version').value;
            const scale = document.getElementById('scale').value;
            const weight = document.getElementById('weight').value;
            
            // 現在のURLからベースURLを取得(パス、パラメータ、ハッシュを含めない)
            const baseUrl = window.location.origin;
            const apiUrl = baseUrl + '/api/restore';
            
            // ファイルのプレビュー用文字列を準備
            let filePreview = '"img-dataURL"';
            if (fileInput.files.length > 0) {
                const file = fileInput.files[0];
                const reader = new FileReader();
                reader.onload = function(e) {
                    const dataURL = e.target.result;
                    if (dataURL.length > 40) {
                        filePreview = `"${dataURL.substring(0, 20)}...${dataURL.substring(dataURL.length - 20)}"`;
                    } else {
                        filePreview = `"${dataURL}"`;
                    }
                    updateFetchCode(apiUrl, version, scale, weight, filePreview);
                };
                reader.readAsDataURL(file);
            } else {
                updateFetchCode(apiUrl, version, scale, weight, filePreview);
            }
        }
        
        function updateFetchCode(apiUrl, version, scale, weight, filePreview) {
            const fetchCodeDiv = document.getElementById('fetchCode');
            let code = `// JavaScript fetch example:
const formData = new FormData();
formData.append('file', ${filePreview});
formData.append('version', '${version}');
formData.append('scale', ${scale});`;

            if (version === 'CodeFormer') {
                code += `
formData.append('weight', ${weight});`;
            }

            code += `
fetch('${apiUrl}', {
    method: 'POST',
    body: formData
})
.then(response => {
    if (!response.ok) {
        return response.json().then(err => { throw new Error(err.error || 'Unknown error'); });
    }
    return response.blob();
})
.then(blob => {
    // Process the returned image blob
    const url = URL.createObjectURL(blob);
    console.log('Image processed successfully', url);
    // Example: document.getElementById('resultImage').src = url;
})
.catch(error => {
    console.error('Error:', error.message);
});`;

            fetchCodeDiv.innerHTML = code;
        }
        
        // フォーム要素の変更を監視
        document.getElementById('file').addEventListener('change', updateApiUsage);
        document.getElementById('version').addEventListener('change', updateApiUsage);
        document.getElementById('scale').addEventListener('input', updateApiUsage);
        document.getElementById('weight').addEventListener('input', updateApiUsage);
        
        // 初期表示
        updateApiUsage();
        
        document.getElementById('uploadForm').addEventListener('submit', function(e) {
            e.preventDefault();
            
            // ボタンを無効化し、ローディングを表示
            const submitButton = document.getElementById('submitButton');
            const loadingElement = document.getElementById('loading');
            
            submitButton.disabled = true;
            loadingElement.style.display = 'block';
            
            const formData = new FormData();
            formData.append('file', document.getElementById('file').files[0]);
            formData.append('version', document.getElementById('version').value);
            formData.append('scale', document.getElementById('scale').value);
            
            // CodeFormerが選択されている場合はweightも追加
            if (document.getElementById('version').value === 'CodeFormer') {
                formData.append('weight', document.getElementById('weight').value);
            }
            
            // 現在のURLからベースURLを取得(パス、パラメータ、ハッシュを含めない)
            const baseUrl = window.location.origin;
            const apiUrl = baseUrl + '/api/restore';
            
            fetch(apiUrl, {
                method: 'POST',
                body: formData
            })
            .then(response => {
                if (!response.ok) {
                    return response.json().then(err => { throw new Error(err.error || 'Unknown error'); });
                }
                return response.blob();
            })
            .then(blob => {
                const url = URL.createObjectURL(blob);
                const preview = document.getElementById('preview');
                const downloadLink = document.getElementById('downloadLink');
                const outputContainer = document.getElementById('outputContainer');
                
                preview.src = url;
                downloadLink.href = url;
                downloadLink.download = 'restored_' + document.getElementById('file').files[0].name;
                outputContainer.style.display = 'block';
            })
            .catch(error => {
                alert('Error: ' + error.message);
            })
            .finally(() => {
                // 処理が終わったらローディングを非表示にし、ボタンを再有効化
                loadingElement.style.display = 'none';
                submitButton.disabled = false;
            });
        });
    </script>
</body>
</html>
    ''')

@app.route('/api/restore', methods=['POST'])
def api_restore():
    if 'file' not in request.files:
        return jsonify({'error': 'No file uploaded'}), 400
    
    file = request.files['file']
    version = request.form.get('version', 'v1.4')
    scale = float(request.form.get('scale', 2))
    weight = float(request.form.get('weight', 0.5)) if version == 'CodeFormer' else None
    
    if file.filename == '':
        return jsonify({'error': 'No selected file'}), 400
    
    try:
        # Save uploaded file to temp location
        temp_dir = tempfile.mkdtemp()
        input_path = os.path.join(temp_dir, file.filename)
        file.save(input_path)
        
        # Process image
        output_path = process_image(input_path, version, scale, weight)
        
        # Return the processed image
        return send_file(output_path, mimetype='image/jpeg')
    
    except Exception as e:
        return jsonify({'error': str(e)}), 500
    
    finally:
        # Clean up temp files
        if 'input_path' in locals() and os.path.exists(input_path):
            os.remove(input_path)
        if 'temp_dir' in locals() and os.path.exists(temp_dir):
            os.rmdir(temp_dir)

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=True)