File size: 5,764 Bytes
a9b3658
 
 
 
 
 
 
 
e0d04f2
6b39384
e0d04f2
6b39384
e0d04f2
 
 
 
 
 
 
 
a9b3658
e0d04f2
a9b3658
 
e0d04f2
 
 
 
 
 
a9b3658
e0d04f2
 
 
a9b3658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0d04f2
a9b3658
 
e0d04f2
 
 
a9b3658
 
 
 
 
e0d04f2
a9b3658
e0d04f2
a9b3658
 
 
 
 
 
 
e0d04f2
 
 
a9b3658
e0d04f2
a9b3658
 
 
 
e0d04f2
 
 
 
 
 
 
a9b3658
e0d04f2
a9b3658
 
e0d04f2
 
a9b3658
e0d04f2
 
 
 
 
 
 
 
 
 
 
 
 
a9b3658
e0d04f2
a9b3658
 
e0d04f2
 
 
 
 
 
 
a9b3658
e0d04f2
a9b3658
 
 
 
e0d04f2
a9b3658
 
 
 
 
 
 
e0d04f2
 
 
a9b3658
 
e0d04f2
 
a9b3658
8df85b7
e0d04f2
a9b3658
e0d04f2
a9b3658
 
8df85b7
e0d04f2
 
 
 
 
 
8df85b7
a9b3658
e0d04f2
 
a9b3658
 
 
8df85b7
e0d04f2
 
 
 
 
 
 
 
a9b3658
e0d04f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import cv2
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
from flask import Flask, request, jsonify, render_template, send_from_directory
import warnings
warnings.filterwarnings("ignore")

# Clone repository and setup (only run once)
if not os.path.exists("DIS"):
    os.system("git clone https://github.com/xuebinqin/DIS")
    os.system("mv DIS/IS-Net/* .")

# Project imports
from data_loader_cache import normalize, im_reader, im_preprocess 
from models import *

# Setup device
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Download official weights if not exists
if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    if not os.path.exists("saved_models/isnet.pth"):
        os.system("mv isnet.pth saved_models/")

class GOSNormalize(object):
    '''
    Normalize the Image using torch.transforms
    '''
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image

transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im,255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape

def build_model(hypar,device):
    net = hypar["model"]#GOSNETINC(3,1)

    # convert to half precision
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()  
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    '''
    Given an Image, predict the mask
    '''
    net.eval()

    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
    ds_val = net(inputs_val_v)[0] # list of 6 results

    pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W    # we want the first one which is the most accurate prediction

    ## recover the prediction spatial size to the orignal image size
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi) # max = 1

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need

# Set Parameters
hypar = {} # paramters for inferencing
hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution
hypar["input_size"] = [1024, 1024] ## model input spatial size
hypar["crop_size"] = [1024, 1024] ## random crop size from the input
hypar["model"] = ISNetDIS()

# Build Model
net = build_model(hypar, device)

# Flask app
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['RESULT_FOLDER'] = 'results'

os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
os.makedirs(app.config['RESULT_FOLDER'], exist_ok=True)

@app.route('/', methods=['GET'])
def index():
    return render_template('index.html')

@app.route('/api/remove_bg', methods=['POST'])
def remove_background():
    if 'image' not in request.files:
        return jsonify({'error': 'No image provided'}), 400
    
    file = request.files['image']
    if file.filename == '':
        return jsonify({'error': 'No image selected'}), 400
    
    # Save uploaded file
    upload_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
    file.save(upload_path)
    
    try:
        # Process image
        image_tensor, orig_size = load_image(upload_path, hypar) 
        mask = predict(net, image_tensor, orig_size, hypar, device)
        
        # Create results
        pil_mask = Image.fromarray(mask).convert('L')
        im_rgb = Image.open(upload_path).convert("RGB")
        im_rgba = im_rgb.copy()
        im_rgba.putalpha(pil_mask)
        
        # Save results
        result_rgba_path = os.path.join(app.config['RESULT_FOLDER'], f"rgba_{file.filename}")
        result_mask_path = os.path.join(app.config['RESULT_FOLDER'], f"mask_{file.filename}")
        
        im_rgba.save(result_rgba_path, format="PNG")
        pil_mask.save(result_mask_path, format="PNG")
        
        return jsonify({
            'rgba_image': f"/results/rgba_{file.filename}",
            'mask_image': f"/results/mask_{file.filename}"
        })
    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/results/<filename>')
def serve_result(filename):
    return send_from_directory(app.config['RESULT_FOLDER'], filename)

@app.route('/uploads/<filename>')
def serve_upload(filename):
    return send_from_directory(app.config['UPLOAD_FOLDER'], filename)

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000, debug=True)