soiz1's picture
Update app.py
8df85b7 verified
raw
history blame
5.84 kB
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Highly Accurate Dichotomous Image Segmentation</title>
<style>
body {
font-family: Arial, sans-serif;
max-width: 800px;
margin: 0 auto;
padding: 20px;
line-height: 1.6;
}
.container {
display: flex;
flex-direction: column;
gap: 20px;
}
.upload-section {
border: 2px dashed #ccc;
padding: 20px;
text-align: center;
border-radius: 5px;
}
.results {
display: flex;
gap: 20px;
flex-wrap: wrap;
}
.result-box {
flex: 1;
min-width: 300px;
}
img {
max-width: 100%;
height: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
button {
background-color: #4CAF50;
color: white;
padding: 10px 15px;
border: none;
border-radius: 4px;
cursor: pointer;
font-size: 16px;
}
button:hover {
background-color: #45a049;
}
.code-block {
background-color: #f5f5f5;
padding: 15px;
border-radius: 5px;
overflow-x: auto;
}
</style>
</head>
<body>
<div class="container">
<h1>Highly Accurate Dichotomous Image Segmentation</h1>
<p>This is a demo for DIS, a model that can remove the background from a given image.</p>
<div class="upload-section">
<h2>Upload Image</h2>
<input type="file" id="imageInput" accept="image/*">
<button onclick="processImage()">Remove Background</button>
</div>
<div class="results">
<div class="result-box">
<h3>Original Image</h3>
<img id="originalImage" src="" alt="Original image will appear here" style="display: none;">
</div>
<div class="result-box">
<h3>Result (RGBA)</h3>
<img id="resultImage" src="" alt="Result will appear here" style="display: none;">
</div>
<div class="result-box">
<h3>Mask</h3>
<img id="maskImage" src="" alt="Mask will appear here" style="display: none;">
</div>
</div>
<div>
<h2>API Usage Example</h2>
<p>You can also use the API directly with this JavaScript code:</p>
<div class="code-block">
<pre><code>
async function removeBackground(imageFile) {
const formData = new FormData();
formData.append('image', imageFile);
try {
const response = await fetch('/api/remove_bg', {
method: 'POST',
body: formData
});
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
const data = await response.json();
console.log('Result:', data);
return data;
} catch (error) {
console.error('Error:', error);
throw error;
}
}
// Usage example:
// const fileInput = document.querySelector('input[type="file"]');
// removeBackground(fileInput.files[0])
// .then(data => {
// // Handle response data
// document.getElementById('resultImage').src = data.rgba_url;
// document.getElementById('maskImage').src = data.mask_url;
// });
</code></pre>
</div>
</div>
</div>
<script>
function processImage() {
const fileInput = document.getElementById('imageInput');
if (!fileInput.files || fileInput.files.length === 0) {
alert('Please select an image first');
return;
}
const file = fileInput.files[0];
const reader = new FileReader();
reader.onload = function(e) {
document.getElementById('originalImage').src = e.target.result;
document.getElementById('originalImage').style.display = 'block';
};
reader.readAsDataURL(file);
removeBackground(file)
.then(data => {
document.getElementById('resultImage').src = data.rgba_url;
document.getElementById('resultImage').style.display = 'block';
document.getElementById('maskImage').src = data.mask_url;
document.getElementById('maskImage').style.display = 'block';
})
.catch(error => {
console.error('Error:', error);
alert('An error occurred while processing the image');
});
}
async function removeBackground(imageFile) {
const formData = new FormData();
formData.append('image', imageFile);
try {
const response = await fetch('/api/remove_bg', {
method: 'POST',
body: formData
});
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
const data = await response.json();
console.log('Result:', data);
return data;
} catch (error) {
console.error('Error:', error);
throw error;
}
}
</script>
</body>
</html>