soiz1's picture
Update app.py
e0d04f2 verified
raw
history blame
5.76 kB
import cv2
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
from flask import Flask, request, jsonify, render_template, send_from_directory
import warnings
warnings.filterwarnings("ignore")
# Clone repository and setup (only run once)
if not os.path.exists("DIS"):
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# Project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
# Setup device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights if not exists
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
if not os.path.exists("saved_models/isnet.pth"):
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms
'''
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im,255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
def build_model(hypar,device):
net = hypar["model"]#GOSNETINC(3,1)
# convert to half precision
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
'''
Given an Image, predict the mask
'''
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
ds_val = net(inputs_val_v)[0] # list of 6 results
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
## recover the prediction spatial size to the orignal image size
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi) # max = 1
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
# Set Parameters
hypar = {} # paramters for inferencing
hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution
hypar["input_size"] = [1024, 1024] ## model input spatial size
hypar["crop_size"] = [1024, 1024] ## random crop size from the input
hypar["model"] = ISNetDIS()
# Build Model
net = build_model(hypar, device)
# Flask app
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['RESULT_FOLDER'] = 'results'
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
os.makedirs(app.config['RESULT_FOLDER'], exist_ok=True)
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/api/remove_bg', methods=['POST'])
def remove_background():
if 'image' not in request.files:
return jsonify({'error': 'No image provided'}), 400
file = request.files['image']
if file.filename == '':
return jsonify({'error': 'No image selected'}), 400
# Save uploaded file
upload_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
file.save(upload_path)
try:
# Process image
image_tensor, orig_size = load_image(upload_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
# Create results
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(upload_path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
# Save results
result_rgba_path = os.path.join(app.config['RESULT_FOLDER'], f"rgba_{file.filename}")
result_mask_path = os.path.join(app.config['RESULT_FOLDER'], f"mask_{file.filename}")
im_rgba.save(result_rgba_path, format="PNG")
pil_mask.save(result_mask_path, format="PNG")
return jsonify({
'rgba_image': f"/results/rgba_{file.filename}",
'mask_image': f"/results/mask_{file.filename}"
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/results/<filename>')
def serve_result(filename):
return send_from_directory(app.config['RESULT_FOLDER'], filename)
@app.route('/uploads/<filename>')
def serve_upload(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)