File size: 15,540 Bytes
4da5970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d70837b
4da5970
d70837b
4da5970
 
d70837b
 
 
 
 
4da5970
 
d70837b
4da5970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d70837b
4da5970
 
 
 
 
 
 
 
 
 
 
a3d9457
 
 
4da5970
 
 
a3d9457
 
 
 
 
 
4da5970
 
a3d9457
 
 
 
4da5970
 
a3d9457
 
4da5970
 
 
 
 
 
377b868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b57f56
4da5970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a45e4
 
 
 
 
4da5970
 
 
 
 
76a45e4
 
 
4da5970
377b868
 
 
 
4da5970
 
 
 
8a9ef5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import json
import os
from collections import defaultdict
from functools import lru_cache

import argilla as rg
import pandas as pd
from dotenv import load_dotenv

load_dotenv()

# Constants
DATA_DIR = "data"
PARTICIPANTS_CSV = os.path.join(DATA_DIR, "participants.csv")
EQUIPOS_CSV = os.path.join(DATA_DIR, "equipos.csv")
LEADERBOARD_PERSONAL_CSV = "leaderboard_personal.csv"
LEADERBOARD_EQUIPOS_CSV = "leaderboard_equipos.csv"

# Column mappings for participants info
COLUMN_MAP = {
    "gmail": "Dirección de correo electrónico",
    "discord": "¿Cuál es tu nombre en Discord?",
    "hf_username": "¿Cuál es tu nombre en el Hub de Hugging Face?",
    "contact_email": "Email de contacto",
}


# Initialize Argilla client
try:
    client = rg.Argilla(
        api_url=os.getenv("ARGILLA_API_URL", ""),
        api_key=os.getenv("ARGILLA_API_KEY", ""),
    )
except Exception as e:
    print(f"Error initializing Argilla client: {e}")
    client = None

# Countries data
countries = {
    "Argentina": {"iso": "ARG", "emoji": "🇦🇷"},
    "Bolivia": {"iso": "BOL", "emoji": "🇧🇴"},
    "Chile": {"iso": "CHL", "emoji": "🇨🇱"},
    "Colombia": {"iso": "COL", "emoji": "🇨🇴"},
    "Costa Rica": {"iso": "CRI", "emoji": "🇨🇷"},
    "Cuba": {"iso": "CUB", "emoji": "🇨🇺"},
    "Ecuador": {"iso": "ECU", "emoji": "🇪🇨"},
    "El Salvador": {"iso": "SLV", "emoji": "🇸🇻"},
    "España": {"iso": "ESP", "emoji": "🇪🇸"},
    "Guatemala": {"iso": "GTM", "emoji": "🇬🇹"},
    "Honduras": {"iso": "HND", "emoji": "🇭🇳"},
    "México": {"iso": "MEX", "emoji": "🇲🇽"},
    "Nicaragua": {"iso": "NIC", "emoji": "🇳🇮"},
    "Panamá": {"iso": "PAN", "emoji": "🇵🇦"},
    "Paraguay": {"iso": "PRY", "emoji": "🇵🇾"},
    "Perú": {"iso": "PER", "emoji": "🇵🇪"},
    "Puerto Rico": {"iso": "PRI", "emoji": "🇵🇷"},
    "República Dominicana": {"iso": "DOM", "emoji": "🇩🇴"},
    "Uruguay": {"iso": "URY", "emoji": "🇺🇾"},
    "Venezuela": {"iso": "VEN", "emoji": "🇻🇪"},
}


@lru_cache(maxsize=1)
def get_user_mapping():
    """Get cached mapping of emails and hf_usernames to discord usernames."""
    if not os.path.exists(PARTICIPANTS_CSV):
        return {}, {}

    try:
        df = pd.read_csv(PARTICIPANTS_CSV)
        email_to_discord = {}
        hf_to_discord = {}

        for _, row in df.iterrows():
            discord = row.get(COLUMN_MAP["discord"], "")
            if pd.notna(discord) and discord != "NA":
                discord_lower = discord.lower()

                # Map gmail to discord
                gmail = row.get(COLUMN_MAP["gmail"], "")
                if pd.notna(gmail) and gmail.strip():
                    email_to_discord[gmail.lower()] = discord_lower

                # Map contact_email to discord
                contact_email = row.get(COLUMN_MAP["contact_email"], "")
                if pd.notna(contact_email) and contact_email.strip():
                    email_to_discord[contact_email.lower()] = discord_lower

                # Map hf_username to discord
                hf_username = row.get(COLUMN_MAP["hf_username"], "")
                if pd.notna(hf_username) and hf_username.strip():
                    hf_to_discord[hf_username.lower()] = discord_lower

        return email_to_discord, hf_to_discord
    except Exception as e:
        print(f"Error loading {PARTICIPANTS_CSV}: {e}")
        return {}, {}


def get_discord_username(identifier):
    """Get discord username from email or hf_username."""
    email_to_discord, hf_to_discord = get_user_mapping()

    if "@" in identifier:
        return email_to_discord.get(identifier.lower(), identifier.split("@")[0])

    return hf_to_discord.get(identifier.lower(), identifier)


def get_participant_info():
    """Get participant information from CSV."""
    if not os.path.exists(PARTICIPANTS_CSV):
        return {}

    try:
        df = pd.read_csv(PARTICIPANTS_CSV)
        participant_info = {}

        for _, row in df.iterrows():
            discord_username = row.get(COLUMN_MAP["discord"], "")
            if pd.notna(discord_username) and discord_username != "NA":
                participant_info[discord_username.lower()] = {
                    "gmail": row.get(COLUMN_MAP["gmail"], ""),
                    "discord_username": discord_username,
                    "hf_username": row.get(COLUMN_MAP["hf_username"], ""),
                    "email": row.get(COLUMN_MAP["contact_email"], ""),
                }

        return participant_info
    except Exception as e:
        print(f"Error loading participant info: {e}")
        return {}


def get_blend_es_data():
    """Get blend-es data from Argilla."""
    if not client:
        return []

    data = []
    for country, info in countries.items():
        dataset_name = f"{info['emoji']} {country} - {info['iso']} - Responder"

        try:
            dataset = client.datasets(dataset_name)
            records = list(dataset.records(with_responses=True))

            user_counts = defaultdict(int)
            user_mapping = {}

            for record in records:
                if "answer_1" in record.responses:
                    for answer in record.responses["answer_1"]:
                        if answer.user_id:
                            user_id = answer.user_id
                            user_counts[user_id] += 1

                            if user_id not in user_mapping:
                                try:
                                    user = client.users(id=user_id)
                                    user_mapping[user_id] = user.username
                                except:
                                    user_mapping[user_id] = f"User-{user_id[:8]}"

            for user_id, count in user_counts.items():
                hf_username = user_mapping.get(user_id, f"User-{user_id[:8]}")
                username = get_discord_username(hf_username)
                data.append(
                    {"source": "blend-es", "username": username, "count": count}
                )

        except Exception as e:
            print(f"Error processing {dataset_name}: {e}")

    return data


def get_include_data():
    """Get include data from CSV."""
    csv_path = os.path.join(DATA_DIR, "include.csv")
    if not os.path.exists(csv_path):
        return []

    try:
        df = pd.read_csv(csv_path)
        username_col = "Nombre en Discord / username"
        questions_col = "Total preguntas hackathon"

        if username_col not in df.columns or questions_col not in df.columns:
            return []

        user_counts = defaultdict(int)
        for _, row in df.iterrows():
            username = row[username_col][1:] if pd.notna(row[username_col]) else ""
            questions = row[questions_col] if pd.notna(row[questions_col]) else 0
            if username and questions:
                user_counts[username.lower()] += int(questions)

        return [
            {"source": "include", "username": username, "count": count}
            for username, count in user_counts.items()
        ]
    except Exception as e:
        print(f"Error loading include data: {e}")
        return []


def get_estereotipos_data():
    """Get estereotipos data from CSV."""
    csv_path = os.path.join(DATA_DIR, "stereotypes.csv")
    if not os.path.exists(csv_path):
        return []

    try:
        df = pd.read_csv(csv_path)
        if "token_id" not in df.columns or "count" not in df.columns:
            return []

        user_counts = defaultdict(int)
        for _, row in df.iterrows():
            mail = row.get("token_id", "")
            count = row.get("count", 0)
            if pd.notna(mail) and pd.notna(count):
                user_counts[mail.lower()] += int(count)

        return [
            {
                "source": "estereotipos",
                "username": get_discord_username(mail),
                "count": count,
            }
            for mail, count in user_counts.items()
        ]
    except Exception as e:
        print(f"Error loading estereotipos data: {e}")
        return []


def get_arena_data():
    """Get arena data from CSV."""
    csv_path = os.path.join(DATA_DIR, "arena_data_cruzada.csv")
    if not os.path.exists(csv_path):
        return []

    try:
        df = pd.read_csv(csv_path)

        # Check if username column exists
        if "username" not in df.columns:
            print("Error: 'username' column not found in arena_data_cruzada.csv")
            return []

        user_counts = defaultdict(int)
        for _, row in df.iterrows():
            username = row.get("username", "")
            if pd.notna(username) and username.strip():
                user_counts[username.lower()] += 1

        return [
            {"source": "arena", "username": get_discord_username(email), "count": count}
            for email, count in user_counts.items()
        ]
    except Exception as e:
        print(f"Error loading arena data: {e}")
        return []


def create_challenge_leaderboards(display_df):
    """Create individual CSV files for each challenge."""

    # Create leaderboards directory if it doesn't exist
    import os

    leaderboards_dir = "leaderboards"
    os.makedirs(leaderboards_dir, exist_ok=True)

    for challenge in ["Arena", "Blend-ES", "Estereotipos", "INCLUDE"]:
        if challenge in display_df.columns:
            # Create challenge-specific dataframe with only username and challenge score
            challenge_df = display_df[["Username", challenge]].copy()

            # Sort by score (descending) and then by username (ascending) for ties
            challenge_df = challenge_df.sort_values(
                [challenge, "Username"], ascending=[False, True]
            )

            # Generate filenames in leaderboards directory
            clean_challenge = challenge.replace(" ", "_").replace("-", "_")
            csv_filename = os.path.join(
                leaderboards_dir, f"leaderboard_{clean_challenge.lower()}.csv"
            )
            txt_filename = os.path.join(
                leaderboards_dir, f"leaderboard_{clean_challenge.lower()}.txt"
            )

            # Save to CSV (include all participants)
            challenge_df.to_csv(csv_filename, index=False, encoding="utf-8")
            print(f"Created {csv_filename} with {len(challenge_df)} participants")

            # Save to TXT as markdown table (exclude users with 0 scores)
            with open(txt_filename, "w", encoding="utf-8") as f:
                f.write(f"# {challenge} Leaderboard\n\n")
                f.write("| Puesto | Discord ID | Puntuación |\n")
                f.write("|------|----------|-------|\n")

                rank = 1
                for _, row in challenge_df.iterrows():
                    username = row["Username"]
                    score = row[challenge]

                    # Skip users with 0 scores
                    if score == 0:
                        continue

                    # Use medal emojis for top 3 ranks
                    if rank == 1:
                        rank_display = "🥇"
                    elif rank == 2:
                        rank_display = "🥈"
                    elif rank == 3:
                        rank_display = "🥉"
                    else:
                        rank_display = str(rank)

                    f.write(f"| {rank_display} | {username} | {score} |\n")
                    rank += 1

            print(
                f"Created {txt_filename} with markdown table format (excluding 0 scores)"
            )

            # Show top 5 scores
            print(f"Top 5 {challenge} scores:")
            for i, (_, row) in enumerate(challenge_df.head().iterrows(), 1):
                print(f"  {i}. {row['Username']}: {row[challenge]}")
            print()


def calculate_personal_scores():
    """Consolidate all data sources and create leaderboard."""
    # Collect all data
    all_data = (
        get_blend_es_data()
        + get_include_data()
        + get_estereotipos_data()
        + get_arena_data()
    )

    # Get participant info
    participant_info = get_participant_info()

    # Aggregate user contributions
    user_contributions = defaultdict(
        lambda: {
            "username": "",
            "gmail": "",
            "discord_username": "",
            "hf_username": "",
            "email": "",
            "blend_es": 0,
            "include": 0,
            "estereotipos": 0,
            "arena": 0,
        }
    )

    for item in all_data:
        source = item["source"]
        username = item["username"]
        count = item["count"]
        user_key = username.lower()

        if not user_contributions[user_key]["username"]:
            user_contributions[user_key]["username"] = username
            if username.lower() in participant_info:
                info = participant_info[username.lower()]
                user_contributions[user_key].update(
                    {
                        "gmail": info["gmail"],
                        "discord_username": info["discord_username"],
                        "hf_username": info["hf_username"],
                        "email": info["email"],
                    }
                )

        if source == "blend-es":
            user_contributions[user_key]["blend_es"] += count
        elif source == "include":
            user_contributions[user_key]["include"] += count
        elif source == "estereotipos":
            user_contributions[user_key]["estereotipos"] += count
        elif source == "arena":
            user_contributions[user_key]["arena"] += count

    # Create dataframes
    full_rows = []
    display_rows = []

    for data in user_contributions.values():
        # Full data for CSV
        full_rows.append(
            {
                "Username": data["username"],
                "Gmail": data["gmail"],
                "Discord_Username": data["discord_username"],
                "HF_Username": data["hf_username"],
                "Email": data["email"],
                "Arena": data["arena"],
                "Blend-ES": data["blend_es"],
                "Estereotipos": data["estereotipos"],
                "INCLUDE": data["include"],
            }
        )

        # Display data for UI (public)
        display_rows.append(
            {
                "Username": data["username"],
                "Arena": data["arena"],
                "Blend-ES": data["blend_es"],
                "Estereotipos": data["estereotipos"],
                "INCLUDE": data["include"],
            }
        )

    # Save full data to CSV
    full_df = pd.DataFrame(full_rows)
    if not full_df.empty:
        full_df.sort_values("Arena", ascending=False, inplace=True)
        full_df.to_csv(
            os.path.join(DATA_DIR, LEADERBOARD_PERSONAL_CSV),
            index=False,
            encoding="utf-8",
        )

    # Return display dataframe for UI
    display_df = pd.DataFrame(display_rows)
    if not display_df.empty:
        display_df.sort_values("Arena", ascending=False, inplace=True)
        display_df.to_csv(
            os.path.join(LEADERBOARD_PERSONAL_CSV), index=False, encoding="utf-8"
        )

        # Create individual challenge leaderboards
        print("\nCreating individual challenge leaderboards...")
        create_challenge_leaderboards(display_df)

    return display_df


if __name__ == "__main__":
    calculate_personal_scores()