|
from fastapi import APIRouter |
|
from datetime import datetime |
|
from datasets import load_dataset |
|
from sklearn.metrics import accuracy_score |
|
import os |
|
import joblib |
|
import librosa |
|
import numpy as np |
|
|
|
from .utils.evaluation import AudioEvaluationRequest |
|
from .utils.emissions import tracker, clean_emissions_data, get_space_info |
|
|
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
router = APIRouter() |
|
|
|
DESCRIPTION = "Model 1 : Knn audio classification" |
|
ROUTE = "/audio" |
|
|
|
|
|
@router.post(ROUTE, tags=["Audio Task"], |
|
description=DESCRIPTION) |
|
async def evaluate_audio(request: AudioEvaluationRequest): |
|
""" |
|
Evaluate audio classification for rainforest sound detection. |
|
|
|
Current Model: Random Baseline |
|
- Makes random predictions from the label space (0-1) |
|
- Used as a baseline for comparison |
|
""" |
|
|
|
username, space_url = get_space_info() |
|
|
|
|
|
LABEL_MAPPING = { |
|
"chainsaw": 0, |
|
"environment": 1 |
|
} |
|
|
|
|
|
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN")) |
|
|
|
|
|
train_test = dataset["train"] |
|
test_dataset = dataset["test"] |
|
|
|
|
|
tracker.start() |
|
tracker.start_task("inference") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess(dataset): |
|
features = [] |
|
for row in dataset: |
|
|
|
target_sr = 6000 |
|
audio = row['audio']['array'] |
|
audio = librosa.resample(audio, orig_sr=12000, target_sr=target_sr) |
|
|
|
|
|
mfccs = librosa.feature.mfcc(y=audio, sr=target_sr, n_mfcc=7) |
|
mfccs_scaled = np.mean(mfccs.T, axis=0) |
|
|
|
|
|
features.append(mfccs_scaled) |
|
|
|
return np.array(features) |
|
|
|
X_test = preprocess(test_dataset) |
|
|
|
classification_model = joblib.load("./models/audio_classification_knn.pkl") |
|
|
|
predictions = classification_model.predict(X_test) |
|
true_labels = test_dataset["label"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
|
|
accuracy = accuracy_score(true_labels, predictions) |
|
|
|
|
|
results = { |
|
"username": username, |
|
"space_url": space_url, |
|
"submission_timestamp": datetime.now().isoformat(), |
|
"model_description": DESCRIPTION, |
|
"accuracy": float(accuracy), |
|
"energy_consumed_wh": emissions_data.energy_consumed * 1000, |
|
"emissions_gco2eq": emissions_data.emissions * 1000, |
|
"emissions_data": clean_emissions_data(emissions_data), |
|
"api_route": ROUTE, |
|
"dataset_config": { |
|
"dataset_name": request.dataset_name, |
|
"test_size": request.test_size, |
|
"test_seed": request.test_seed |
|
} |
|
} |
|
return results |
|
|