sourav520's picture
Update app.py
2bc1ec9 verified
import os
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import transforms
from PIL import Image
import gradio as gr
# Suppress warnings
warnings.filterwarnings("ignore")
# Clone DIS repo if not exists
if not os.path.exists("DIS"):
os.system("git clone https://github.com/xuebinqin/DIS")
# Move model files
if not os.path.exists("models.py"):
os.system("mv DIS/IS-Net/* .")
# Project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
# Setup device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Prepare saved models folder
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
# NOTE: make sure isnet.pth is available locally
os.system("mv isnet.pth saved_models/")
# --- Helpers ---
class GOSNormalize(object):
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
return normalize(image, self.mean, self.std)
transform = transforms.Compose([
GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(
os.path.join(hypar["model_path"], hypar["restore_model"]),
map_location=device
))
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0, :, :, :]
pred_val = torch.squeeze(F.interpolate(
torch.unsqueeze(pred_val, 0),
(shapes_val[0][0], shapes_val[0][1]),
mode='bilinear'
))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi)
if device == 'cuda':
torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
# --- Prepare model ---
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
net = build_model(hypar, device)
# --- Inference ---
def inference(image):
image_path = image
image_tensor, orig_size = load_image(image_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(image_path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
return [im_rgba, pil_mask]
# --- Custom CSS to hide footer ---
css_hide_footer = """
footer {display: none !important;}
#component-12 {display: none !important;}
#huggingface-space-header {display: none !important;}
button[data-testid="ShareButton"] {display: none !important;}
"""
# --- Gradio Interface ---
interface = gr.Interface(
fn=inference,
inputs=gr.Image(type='filepath', height=300, width=300),
outputs=[
gr.Image(type='filepath', format="png"),
gr.Image(type='filepath', format="png", visible=False)
],
flagging_mode="never",
cache_mode="lazy",
css=css_hide_footer # ✅ CSS here inside Interface, not launch
)
interface.launch(
show_error=False,
show_api=False,
share=False
)