|
import os |
|
import warnings |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
from torchvision import transforms |
|
from PIL import Image |
|
import gradio as gr |
|
|
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
if not os.path.exists("DIS"): |
|
os.system("git clone https://github.com/xuebinqin/DIS") |
|
|
|
|
|
if not os.path.exists("models.py"): |
|
os.system("mv DIS/IS-Net/* .") |
|
|
|
|
|
from data_loader_cache import normalize, im_reader, im_preprocess |
|
from models import * |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
if not os.path.exists("saved_models"): |
|
os.mkdir("saved_models") |
|
|
|
os.system("mv isnet.pth saved_models/") |
|
|
|
|
|
class GOSNormalize(object): |
|
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self, image): |
|
return normalize(image, self.mean, self.std) |
|
|
|
transform = transforms.Compose([ |
|
GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) |
|
]) |
|
|
|
def load_image(im_path, hypar): |
|
im = im_reader(im_path) |
|
im, im_shp = im_preprocess(im, hypar["cache_size"]) |
|
im = torch.divide(im, 255.0) |
|
shape = torch.from_numpy(np.array(im_shp)) |
|
return transform(im).unsqueeze(0), shape.unsqueeze(0) |
|
|
|
def build_model(hypar, device): |
|
net = hypar["model"] |
|
if hypar["model_digit"] == "half": |
|
net.half() |
|
for layer in net.modules(): |
|
if isinstance(layer, nn.BatchNorm2d): |
|
layer.float() |
|
net.to(device) |
|
if hypar["restore_model"] != "": |
|
net.load_state_dict(torch.load( |
|
os.path.join(hypar["model_path"], hypar["restore_model"]), |
|
map_location=device |
|
)) |
|
net.eval() |
|
return net |
|
|
|
def predict(net, inputs_val, shapes_val, hypar, device): |
|
net.eval() |
|
if hypar["model_digit"] == "full": |
|
inputs_val = inputs_val.type(torch.FloatTensor) |
|
else: |
|
inputs_val = inputs_val.type(torch.HalfTensor) |
|
|
|
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) |
|
ds_val = net(inputs_val_v)[0] |
|
pred_val = ds_val[0][0, :, :, :] |
|
pred_val = torch.squeeze(F.interpolate( |
|
torch.unsqueeze(pred_val, 0), |
|
(shapes_val[0][0], shapes_val[0][1]), |
|
mode='bilinear' |
|
)) |
|
ma = torch.max(pred_val) |
|
mi = torch.min(pred_val) |
|
pred_val = (pred_val - mi) / (ma - mi) |
|
if device == 'cuda': |
|
torch.cuda.empty_cache() |
|
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) |
|
|
|
|
|
hypar = { |
|
"model_path": "./saved_models", |
|
"restore_model": "isnet.pth", |
|
"interm_sup": False, |
|
"model_digit": "full", |
|
"seed": 0, |
|
"cache_size": [1024, 1024], |
|
"input_size": [1024, 1024], |
|
"crop_size": [1024, 1024], |
|
"model": ISNetDIS() |
|
} |
|
|
|
net = build_model(hypar, device) |
|
|
|
|
|
def inference(image): |
|
image_path = image |
|
image_tensor, orig_size = load_image(image_path, hypar) |
|
mask = predict(net, image_tensor, orig_size, hypar, device) |
|
pil_mask = Image.fromarray(mask).convert('L') |
|
|
|
im_rgb = Image.open(image_path).convert("RGB") |
|
im_rgba = im_rgb.copy() |
|
im_rgba.putalpha(pil_mask) |
|
|
|
return [im_rgba, pil_mask] |
|
|
|
|
|
css_hide_footer = """ |
|
footer {display: none !important;} |
|
#component-12 {display: none !important;} |
|
#huggingface-space-header {display: none !important;} |
|
button[data-testid="ShareButton"] {display: none !important;} |
|
""" |
|
|
|
|
|
interface = gr.Interface( |
|
fn=inference, |
|
inputs=gr.Image(type='filepath', height=300, width=300), |
|
outputs=[ |
|
gr.Image(type='filepath', format="png"), |
|
gr.Image(type='filepath', format="png", visible=False) |
|
], |
|
flagging_mode="never", |
|
cache_mode="lazy", |
|
css=css_hide_footer |
|
) |
|
|
|
interface.launch( |
|
show_error=False, |
|
show_api=False, |
|
share=False |
|
) |
|
|