Spaces:
Sleeping
Sleeping
File size: 4,534 Bytes
eb24fe7 8f6b83a eb24fe7 70d5e84 fd18b9b 70d5e84 fd18b9b 70d5e84 bfbcea8 70d5e84 0f8cfcd bf6140a 0f8cfcd bf6140a eb24fe7 0f8cfcd eb24fe7 0f8cfcd bf6140a 0f8cfcd 2a5fc50 8f6b83a 70d5e84 0f8cfcd 70d5e84 0f8cfcd 70d5e84 0f8cfcd 70d5e84 0f8cfcd 70d5e84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import cv2
from matplotlib.pyplot import axis
import gradio as gr
import requests
import numpy as np
from torch import nn
import requests
import torch
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
models = [
{
"name": "Version 1 (2-class)",
"model_path": "https://huggingface.co/stalyn314/10xmineralmodel/resolve/main/xplx10x_d2.pth",
"classes": ["minerales", "Afs", "Amp", "Bt", "Ms", "Ol", "Pl", "Px", "Qz"],
"cfg": None,
"metadata": None
},
{
"name": "Version 2 (4-class)",
"model_path": "https://huggingface.co/stalyn314/10xmineralmodel/resolve/main/10xmodel_d2.pth",
"classes": ["minerales", "Afs", "Amp", "Bt", "Ms", "Ol", "Pl", "Px", "Qz"],
"cfg": None,
"metadata": None
},
]
model_name_to_id = {model["name"] : id_ for id_, model in enumerate(models)}
for model in models:
model["cfg"] = get_cfg()
model["cfg"].merge_from_file("./configs/detectron2/mask_rcnn_X_101_32x8d_FPN_3x.yaml")
model["cfg"].MODEL.ROI_HEADS.NUM_CLASSES = len(model["classes"])
model["cfg"].MODEL.WEIGHTS = model["model_path"]
model["metadata"] = MetadataCatalog.get(model["name"])
model["metadata"].thing_classes = model["classes"]
if not torch.cuda.is_available():
model["cfg"].MODEL.DEVICE = "cpu"
def inference(image_url, image, min_score, model_name):
if image_url:
r = requests.get(image_url)
if r:
im = np.frombuffer(r.content, dtype="uint8")
im = cv2.imdecode(im, cv2.IMREAD_COLOR_BGR2RGB)
else:
# Model expect BGR!
im = image[:,:,::-1]
model_id = model_name_to_id[model_name]
models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
predictor = DefaultPredictor(models[model_id]["cfg"])
outputs = predictor(im)
v = Visualizer(im, models[model_id]["metadata"], scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# Convertir la imagen de salida de BGR a RGB
result_image = out.get_image() # Esto sigue estando en BGR
result_image_rgb = result_image[:, :, ::-1] # Convertir BGR a RGB
return result_image_rgb
title = "# DBMDZ Detectron2 Model Demo"
description = """
This demo introduces an interactive playground for our trained Detectron2 model.
Currently, two models are supported that were trained on manually annotated segments from digitized books:
* [Version 1 (2-class)](https://huggingface.co/dbmdz/detectron2-model): This model can detect *Illustration* or *Illumination* segments on a given page.
* [Version 2 (4-class)](https://huggingface.co/dbmdz/detectron2-v2-model): This model is more powerful and can detect *Illustration*, *Stamp*, *Initial* or *Other* segments on a given page.
"""
footer = "Made in Munich with ❤️ and 🥨."
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tab("From URL"):
url_input = gr.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg")
with gr.Tab("From Image"):
image_input = gr.Image(type="numpy", label="Input Image")
min_score = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score")
model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model")
output_image = gr.Image(type="pil", label="Output")
inference_button = gr.Button("Submit")
inference_button.click(fn=inference, inputs=[url_input, image_input, min_score, model_name], outputs=output_image)
gr.Markdown(footer)
demo.launch()
#gr.Interface(
# inference,
# [gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"),
# gr.inputs.Image(type="numpy", label="Input Image"),
# gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score"),
# gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model"),
# ],
# gr.outputs.Image(type="pil", label="Output"),
# title=title,
# description=description,
# article=article,
# examples=[]).launch()
|