ReubenSun's picture
texture sync
55f226f
raw
history blame
19.1 kB
import torch
import pytorch3d
from pytorch3d.io import load_objs_as_meshes, load_obj, save_obj, IO
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
look_at_view_transform,
FoVPerspectiveCameras,
FoVOrthographicCameras,
AmbientLights,
PointLights,
DirectionalLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
TexturesUV
)
from .geometry import HardGeometryShader
from .shader import HardNChannelFlatShader
from .voronoi import voronoi_solve
from trimesh import Trimesh
# Pytorch3D based renderering functions, managed in a class
# Render size is recommended to be the same as your latent view size
# DO NOT USE "bilinear" sampling when you are handling latents.
# Stable Diffusion has 4 latent channels so use channels=4
class UVProjection():
def __init__(self, texture_size=96, render_size=64, sampling_mode="nearest", channels=3, device=None):
self.channels = channels
self.device = device or torch.device("cpu")
self.lights = AmbientLights(ambient_color=((1.0,)*channels,), device=self.device)
self.target_size = (texture_size,texture_size)
self.render_size = render_size
self.sampling_mode = sampling_mode
# # Load obj mesh, rescale the mesh to fit into the bounding box
# def load_mesh(self, mesh_path, scale_factor=2.0, auto_center=True, autouv=False):
# mesh = load_objs_as_meshes([mesh_path], device=self.device)
# if auto_center:
# verts = mesh.verts_packed()
# max_bb = (verts - 0).max(0)[0]
# min_bb = (verts - 0).min(0)[0]
# scale = (max_bb - min_bb).max()/2
# center = (max_bb+min_bb) /2
# mesh.offset_verts_(-center)
# mesh.scale_verts_((scale_factor / float(scale)))
# else:
# mesh.scale_verts_((scale_factor))
# if autouv or (mesh.textures is None):
# mesh = self.uv_unwrap(mesh)
# self.mesh = mesh
# Load obj mesh, rescale the mesh to fit into the bounding box
def load_mesh(self, mesh, scale_factor=2.0, auto_center=True, autouv=False, normals=None):
if isinstance(mesh, Trimesh):
vertices = torch.tensor(mesh.vertices, dtype=torch.float32).to(self.device)
faces = torch.tensor(mesh.faces, dtype=torch.int64).to(self.device)
if faces.ndim == 1:
faces = faces.unsqueeze(0)
mesh = Meshes(
verts=[vertices],
faces=[faces]
)
verts = mesh.verts_packed()
mesh = mesh.update_padded(verts[None,:, :])
# from pytorch3d.renderer.mesh.textures import TexturesVertex
# if normals is None:
# normals = mesh.verts_normals_packed()
# # set normals as vertext colors
# mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5])
elif isinstance(mesh, str) and os.path.isfile(mesh):
mesh = load_objs_as_meshes([mesh_path], device=self.device)
if auto_center:
verts = mesh.verts_packed()
max_bb = (verts - 0).max(0)[0]
min_bb = (verts - 0).min(0)[0]
scale = (max_bb - min_bb).max()/2
center = (max_bb+min_bb) /2
mesh.offset_verts_(-center)
mesh.scale_verts_((scale_factor / float(scale)))
else:
mesh.scale_verts_((scale_factor))
if autouv or (mesh.textures is None):
mesh = self.uv_unwrap(mesh)
self.mesh = mesh
def load_glb_mesh(self, mesh_path, scale_factor=2.0, auto_center=True, autouv=False):
from pytorch3d.io.experimental_gltf_io import MeshGlbFormat
io = IO()
io.register_meshes_format(MeshGlbFormat())
with open(mesh_path, "rb") as f:
mesh = io.load_mesh(f, include_textures=True, device=self.device)
if auto_center:
verts = mesh.verts_packed()
max_bb = (verts - 0).max(0)[0]
min_bb = (verts - 0).min(0)[0]
scale = (max_bb - min_bb).max()/2
center = (max_bb+min_bb) /2
mesh.offset_verts_(-center)
mesh.scale_verts_((scale_factor / float(scale)))
else:
mesh.scale_verts_((scale_factor))
if autouv or (mesh.textures is None):
mesh = self.uv_unwrap(mesh)
self.mesh = mesh
# Save obj mesh
def save_mesh(self, mesh_path, texture):
save_obj(mesh_path,
self.mesh.verts_list()[0],
self.mesh.faces_list()[0],
verts_uvs= self.mesh.textures.verts_uvs_list()[0],
faces_uvs= self.mesh.textures.faces_uvs_list()[0],
texture_map=texture)
# Code referred to TEXTure code (https://github.com/TEXTurePaper/TEXTurePaper.git)
def uv_unwrap(self, mesh):
verts_list = mesh.verts_list()[0]
faces_list = mesh.faces_list()[0]
import xatlas
import numpy as np
v_np = verts_list.cpu().numpy()
f_np = faces_list.int().cpu().numpy()
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
chart_options.max_iterations = 4
atlas.generate(chart_options=chart_options)
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
vt = torch.from_numpy(vt_np.astype(np.float32)).type(verts_list.dtype).to(mesh.device)
ft = torch.from_numpy(ft_np.astype(np.int64)).type(faces_list.dtype).to(mesh.device)
new_map = torch.zeros(self.target_size+(self.channels,), device=mesh.device)
new_tex = TexturesUV(
[new_map],
[ft],
[vt],
sampling_mode=self.sampling_mode
)
mesh.textures = new_tex
return mesh
'''
A functions that disconnect faces in the mesh according to
its UV seams. The number of vertices are made equal to the
number of unique vertices its UV layout, while the faces list
is intact.
'''
def disconnect_faces(self):
mesh = self.mesh
verts_list = mesh.verts_list()
faces_list = mesh.faces_list()
verts_uvs_list = mesh.textures.verts_uvs_list()
faces_uvs_list = mesh.textures.faces_uvs_list()
packed_list = [v[f] for v,f in zip(verts_list, faces_list)]
verts_disconnect_list = [
torch.zeros(
(verts_uvs_list[i].shape[0], 3),
dtype=verts_list[0].dtype,
device=verts_list[0].device
)
for i in range(len(verts_list))]
for i in range(len(verts_list)):
verts_disconnect_list[i][faces_uvs_list] = packed_list[i]
assert not mesh.has_verts_normals(), "Not implemented for vertex normals"
self.mesh_d = Meshes(verts_disconnect_list, faces_uvs_list, mesh.textures)
return self.mesh_d
'''
A function that construct a temp mesh for back-projection.
Take a disconnected mesh and a rasterizer, the function calculates
the projected faces as the UV, as use its original UV with pseudo
z value as world space geometry.
'''
def construct_uv_mesh(self):
mesh = self.mesh_d
verts_list = mesh.verts_list()
verts_uvs_list = mesh.textures.verts_uvs_list()
# faces_list = [torch.flip(faces, [-1]) for faces in mesh.faces_list()]
new_verts_list = []
for i, (verts, verts_uv) in enumerate(zip(verts_list, verts_uvs_list)):
verts = verts.clone()
verts_uv = verts_uv.clone()
verts[...,0:2] = verts_uv[...,:]
verts = (verts - 0.5) * 2
verts[...,2] *= 1
new_verts_list.append(verts)
textures_uv = mesh.textures.clone()
self.mesh_uv = Meshes(new_verts_list, mesh.faces_list(), textures_uv)
return self.mesh_uv
# Set texture for the current mesh.
def set_texture_map(self, texture):
new_map = texture.permute(1, 2, 0)
new_map = new_map.to(self.device)
new_tex = TexturesUV(
[new_map],
self.mesh.textures.faces_uvs_padded(),
self.mesh.textures.verts_uvs_padded(),
sampling_mode=self.sampling_mode
)
self.mesh.textures = new_tex
# Set the initial normal noise texture
# No generator here for replication of the experiment result. Add one as you wish
def set_noise_texture(self, channels=None):
if not channels:
channels = self.channels
noise_texture = torch.normal(0, 1, (channels,) + self.target_size, device=self.device)
self.set_texture_map(noise_texture)
return noise_texture
# Set the cameras given the camera poses and centers
def set_cameras(self, camera_poses, centers=None, camera_distance=2.7, scale=None):
elev = torch.FloatTensor([pose[0] for pose in camera_poses])
azim = torch.FloatTensor([pose[1] for pose in camera_poses])
R, T = look_at_view_transform(dist=camera_distance, elev=elev, azim=azim, at=centers or ((0,0,0),))
# self.cameras = FoVOrthographicCameras(device=self.device, R=R, T=T, scale_xyz=scale or ((1,1,1),))
self.cameras = FoVOrthographicCameras(device=self.device, R=R, T=T, scale_xyz=scale or ((1,1,1),), znear=0.1, min_x=-0.55, max_x=0.55, min_y=-0.55, max_y=0.55)
# Set all necessary internal data for rendering and texture baking
# Can be used to refresh after changing camera positions
def set_cameras_and_render_settings(self, camera_poses, centers=None, camera_distance=2.7, render_size=None, scale=None):
self.set_cameras(camera_poses, centers, camera_distance, scale=scale)
if render_size is None:
render_size = self.render_size
if not hasattr(self, "renderer"):
self.setup_renderer(size=render_size)
if not hasattr(self, "mesh_d"):
self.disconnect_faces()
if not hasattr(self, "mesh_uv"):
self.construct_uv_mesh()
self.calculate_tex_gradient()
self.calculate_visible_triangle_mask()
_,_,_,cos_maps,_, _ = self.render_geometry()
self.calculate_cos_angle_weights(cos_maps)
# Setup renderers for rendering
# max faces per bin set to 30000 to avoid overflow in many test cases.
# You can use default value to let pytorch3d handle that for you.
def setup_renderer(self, size=64, blur=0.0, face_per_pix=1, perspective_correct=False, channels=None):
if not channels:
channels = self.channels
self.raster_settings = RasterizationSettings(
image_size=size,
blur_radius=blur,
faces_per_pixel=face_per_pix,
perspective_correct=perspective_correct,
cull_backfaces=True,
max_faces_per_bin=30000,
)
self.renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=self.cameras,
raster_settings=self.raster_settings,
),
shader=HardNChannelFlatShader(
device=self.device,
cameras=self.cameras,
lights=self.lights,
channels=channels
# materials=materials
)
)
# Bake screen-space cosine weights to UV space
# May be able to reimplement using the generic "bake_texture" function, but it works so leave it here for now
@torch.enable_grad()
def calculate_cos_angle_weights(self, cos_angles, fill=True, channels=None):
if not channels:
channels = self.channels
cos_maps = []
tmp_mesh = self.mesh.clone()
for i in range(len(self.cameras)):
zero_map = torch.zeros(self.target_size+(channels,), device=self.device, requires_grad=True)
optimizer = torch.optim.SGD([zero_map], lr=1, momentum=0)
optimizer.zero_grad()
zero_tex = TexturesUV([zero_map], self.mesh.textures.faces_uvs_padded(), self.mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode)
tmp_mesh.textures = zero_tex
images_predicted = self.renderer(tmp_mesh, cameras=self.cameras[i], lights=self.lights)
loss = torch.sum((cos_angles[i,:,:,0:1]**1 - images_predicted)**2)
loss.backward()
optimizer.step()
if fill:
zero_map = zero_map.detach() / (self.gradient_maps[i] + 1E-8)
zero_map = voronoi_solve(zero_map, self.gradient_maps[i][...,0])
else:
zero_map = zero_map.detach() / (self.gradient_maps[i]+1E-8)
cos_maps.append(zero_map)
self.cos_maps = cos_maps
# Get geometric info from fragment shader
# Can be used for generating conditioning image and cosine weights
# Returns some information you may not need, remember to release them for memory saving
@torch.no_grad()
def render_geometry(self, image_size=None):
if image_size:
size = self.renderer.rasterizer.raster_settings.image_size
self.renderer.rasterizer.raster_settings.image_size = image_size
shader = self.renderer.shader
self.renderer.shader = HardGeometryShader(device=self.device, cameras=self.cameras[0], lights=self.lights)
tmp_mesh = self.mesh.clone()
verts, normals, depths, cos_angles, texels, fragments = self.renderer(tmp_mesh.extend(len(self.cameras)), cameras=self.cameras, lights=self.lights)
self.renderer.shader = shader
if image_size:
self.renderer.rasterizer.raster_settings.image_size = size
return verts, normals, depths, cos_angles, texels, fragments
# Project world normal to view space and normalize
@torch.no_grad()
def decode_view_normal(self, normals):
w2v_mat = self.cameras.get_full_projection_transform()
normals_view = torch.clone(normals)[:,:,:,0:3]
normals_view = normals_view.reshape(normals_view.shape[0], -1, 3)
normals_view = w2v_mat.transform_normals(normals_view)
normals_view = normals_view.reshape(normals.shape[0:3]+(3,))
normals_view[:,:,:,2] *= -1
normals = (normals_view[...,0:3]+1) * normals[...,3:] / 2 + torch.FloatTensor(((((0.5,0.5,1))))).to(self.device) * (1 - normals[...,3:])
# normals = torch.cat([normal for normal in normals], dim=1)
normals = normals.clamp(0, 1)
return normals
# Normalize absolute depth to inverse depth
@torch.no_grad()
def decode_normalized_depth(self, depths, batched_norm=False):
view_z, mask = depths.unbind(-1)
view_z = view_z * mask + 100 * (1-mask)
inv_z = 1 / view_z
inv_z_min = inv_z * mask + 100 * (1-mask)
if not batched_norm:
max_ = torch.max(inv_z, 1, keepdim=True)
max_ = torch.max(max_[0], 2, keepdim=True)[0]
min_ = torch.min(inv_z_min, 1, keepdim=True)
min_ = torch.min(min_[0], 2, keepdim=True)[0]
else:
max_ = torch.max(inv_z)
min_ = torch.min(inv_z_min)
inv_z = (inv_z - min_) / (max_ - min_)
inv_z = inv_z.clamp(0,1)
inv_z = inv_z[...,None].repeat(1,1,1,3)
return inv_z
# Multiple screen pixels could pass gradient to a same texel
# We can precalculate this gradient strength and use it to normalize gradients when we bake textures
@torch.enable_grad()
def calculate_tex_gradient(self, channels=None):
if not channels:
channels = self.channels
tmp_mesh = self.mesh.clone()
gradient_maps = []
for i in range(len(self.cameras)):
zero_map = torch.zeros(self.target_size+(channels,), device=self.device, requires_grad=True)
optimizer = torch.optim.SGD([zero_map], lr=1, momentum=0)
optimizer.zero_grad()
zero_tex = TexturesUV([zero_map], self.mesh.textures.faces_uvs_padded(), self.mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode)
tmp_mesh.textures = zero_tex
images_predicted = self.renderer(tmp_mesh, cameras=self.cameras[i], lights=self.lights)
loss = torch.sum((1 - images_predicted)**2)
loss.backward()
optimizer.step()
gradient_maps.append(zero_map.detach())
self.gradient_maps = gradient_maps
# Get the UV space masks of triangles visible in each view
# First get face ids from each view, then filter pixels on UV space to generate masks
@torch.no_grad()
def calculate_visible_triangle_mask(self, channels=None, image_size=(512,512)):
if not channels:
channels = self.channels
pix2face_list = []
for i in range(len(self.cameras)):
self.renderer.rasterizer.raster_settings.image_size=image_size
pix2face = self.renderer.rasterizer(self.mesh_d, cameras=self.cameras[i]).pix_to_face
self.renderer.rasterizer.raster_settings.image_size=self.render_size
pix2face_list.append(pix2face)
if not hasattr(self, "mesh_uv"):
self.construct_uv_mesh()
raster_settings = RasterizationSettings(
image_size=self.target_size,
blur_radius=0,
faces_per_pixel=1,
perspective_correct=False,
cull_backfaces=False,
max_faces_per_bin=30000,
)
R, T = look_at_view_transform(dist=2, elev=0, azim=0)
cameras = FoVOrthographicCameras(device=self.device, R=R, T=T)
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
)
uv_pix2face = rasterizer(self.mesh_uv).pix_to_face
visible_triangles = []
for i in range(len(pix2face_list)):
valid_faceid = torch.unique(pix2face_list[i])
valid_faceid = valid_faceid[1:] if valid_faceid[0]==-1 else valid_faceid
mask = torch.isin(uv_pix2face[0], valid_faceid, assume_unique=False)
# uv_pix2face[0][~mask] = -1
triangle_mask = torch.ones(self.target_size+(1,), device=self.device)
triangle_mask[~mask] = 0
triangle_mask[:,1:][triangle_mask[:,:-1] > 0] = 1
triangle_mask[:,:-1][triangle_mask[:,1:] > 0] = 1
triangle_mask[1:,:][triangle_mask[:-1,:] > 0] = 1
triangle_mask[:-1,:][triangle_mask[1:,:] > 0] = 1
visible_triangles.append(triangle_mask)
self.visible_triangles = visible_triangles
# Render the current mesh and texture from current cameras
def render_textured_views(self):
meshes = self.mesh.extend(len(self.cameras))
images_predicted = self.renderer(meshes, cameras=self.cameras, lights=self.lights)
return [image.permute(2, 0, 1) for image in images_predicted]
# Bake views into a texture
# First bake into individual textures then combine based on cosine weight
@torch.enable_grad()
def bake_texture(self, views=None, main_views=[], cos_weighted=True, channels=None, exp=None, noisy=False, generator=None):
if not exp:
exp=1
if not channels:
channels = self.channels
views = [view.permute(1, 2, 0) for view in views]
tmp_mesh = self.mesh
bake_maps = [torch.zeros(self.target_size+(views[0].shape[2],), device=self.device, requires_grad=True) for view in views]
optimizer = torch.optim.SGD(bake_maps, lr=1, momentum=0)
optimizer.zero_grad()
loss = 0
for i in range(len(self.cameras)):
bake_tex = TexturesUV([bake_maps[i]], tmp_mesh.textures.faces_uvs_padded(), tmp_mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode)
tmp_mesh.textures = bake_tex
images_predicted = self.renderer(tmp_mesh, cameras=self.cameras[i], lights=self.lights, device=self.device)
predicted_rgb = images_predicted[..., :-1]
loss += (((predicted_rgb[...] - views[i]))**2).sum()
loss.backward(retain_graph=False)
optimizer.step()
total_weights = 0
baked = 0
for i in range(len(bake_maps)):
normalized_baked_map = bake_maps[i].detach() / (self.gradient_maps[i] + 1E-8)
bake_map = voronoi_solve(normalized_baked_map, self.gradient_maps[i][...,0])
weight = self.visible_triangles[i] * (self.cos_maps[i]) ** exp
if noisy:
noise = torch.rand(weight.shape[:-1]+(1,), generator=generator).type(weight.dtype).to(weight.device)
weight *= noise
total_weights += weight
baked += bake_map * weight
baked /= total_weights + 1E-8
baked = voronoi_solve(baked, total_weights[...,0])
bake_tex = TexturesUV([baked], tmp_mesh.textures.faces_uvs_padded(), tmp_mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode)
tmp_mesh.textures = bake_tex
extended_mesh = tmp_mesh.extend(len(self.cameras))
images_predicted = self.renderer(extended_mesh, cameras=self.cameras, lights=self.lights)
learned_views = [image.permute(2, 0, 1) for image in images_predicted]
return learned_views, baked.permute(2, 0, 1), total_weights.permute(2, 0, 1)
# Move the internel data to a specific device
def to(self, device):
for mesh_name in ["mesh", "mesh_d", "mesh_uv"]:
if hasattr(self, mesh_name):
mesh = getattr(self, mesh_name)
setattr(self, mesh_name, mesh.to(device))
for list_name in ["visible_triangles", "visibility_maps", "cos_maps"]:
if hasattr(self, list_name):
map_list = getattr(self, list_name)
for i in range(len(map_list)):
map_list[i] = map_list[i].to(device)