Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import math | |
import os | |
import re | |
import shutil | |
from typing import List, Optional, Union | |
import cv2 | |
import imageio | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
# import wandb | |
from matplotlib import cm | |
from matplotlib.colors import LinearSegmentedColormap | |
from PIL import Image, ImageDraw | |
from .typing import * | |
def tensor_to_image( | |
data: Union[Image.Image, torch.Tensor, np.ndarray], | |
batched: bool = False, | |
format: str = "HWC", | |
) -> Union[Image.Image, List[Image.Image]]: | |
if isinstance(data, Image.Image): | |
return data | |
if isinstance(data, torch.Tensor): | |
data = data.detach().cpu().numpy() | |
if data.dtype == np.float32 or data.dtype == np.float16: | |
data = (data * 255).astype(np.uint8) | |
elif data.dtype == np.bool_: | |
data = data.astype(np.uint8) * 255 | |
assert data.dtype == np.uint8 | |
if format == "CHW": | |
if batched and data.ndim == 4: | |
data = data.transpose((0, 2, 3, 1)) | |
elif not batched and data.ndim == 3: | |
data = data.transpose((1, 2, 0)) | |
if batched: | |
return [Image.fromarray(d) for d in data] | |
return Image.fromarray(data) | |
def largest_factor_near_sqrt(n: int) -> int: | |
""" | |
Finds the largest factor of n that is closest to the square root of n. | |
Args: | |
n (int): The integer for which to find the largest factor near its square root. | |
Returns: | |
int: The largest factor of n that is closest to the square root of n. | |
""" | |
sqrt_n = int(math.sqrt(n)) # Get the integer part of the square root | |
# First, check if the square root itself is a factor | |
if sqrt_n * sqrt_n == n: | |
return sqrt_n | |
# Otherwise, find the largest factor by iterating from sqrt_n downwards | |
for i in range(sqrt_n, 0, -1): | |
if n % i == 0: | |
return i | |
# If n is 1, return 1 | |
return 1 | |
def make_image_grid( | |
images: List[Image.Image], | |
rows: Optional[int] = None, | |
cols: Optional[int] = None, | |
resize: Optional[int] = None, | |
) -> Image.Image: | |
""" | |
Prepares a single grid of images. Useful for visualization purposes. | |
""" | |
if rows is None and cols is not None: | |
assert len(images) % cols == 0 | |
rows = len(images) // cols | |
elif cols is None and rows is not None: | |
assert len(images) % rows == 0 | |
cols = len(images) // rows | |
elif rows is None and cols is None: | |
rows = largest_factor_near_sqrt(len(images)) | |
cols = len(images) // rows | |
assert len(images) == rows * cols | |
if resize is not None: | |
images = [img.resize((resize, resize)) for img in images] | |
w, h = images[0].size | |
grid = Image.new("RGB", size=(cols * w, rows * h)) | |
for i, img in enumerate(images): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
class SaverMixin: | |
_save_dir: Optional[str] = None | |
_wandb_logger: Optional[Any] = None | |
def set_save_dir(self, save_dir: str): | |
self._save_dir = save_dir | |
def get_save_dir(self): | |
if self._save_dir is None: | |
raise ValueError("Save dir is not set") | |
return self._save_dir | |
def convert_data(self, data): | |
if data is None: | |
return None | |
elif isinstance(data, np.ndarray): | |
return data | |
elif isinstance(data, torch.Tensor): | |
if data.dtype in [torch.float16, torch.bfloat16]: | |
data = data.float() | |
return data.detach().cpu().numpy() | |
elif isinstance(data, list): | |
return [self.convert_data(d) for d in data] | |
elif isinstance(data, dict): | |
return {k: self.convert_data(v) for k, v in data.items()} | |
else: | |
raise TypeError( | |
"Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting", | |
type(data), | |
) | |
def get_save_path(self, filename): | |
save_path = os.path.join(self.get_save_dir(), filename) | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
return save_path | |
DEFAULT_RGB_KWARGS = {"data_format": "HWC", "data_range": (0, 1)} | |
DEFAULT_UV_KWARGS = { | |
"data_format": "HWC", | |
"data_range": (0, 1), | |
"cmap": "checkerboard", | |
} | |
DEFAULT_GRAYSCALE_KWARGS = {"data_range": None, "cmap": "jet"} | |
DEFAULT_GRID_KWARGS = {"align": "max"} | |
def get_rgb_image_(self, img, data_format, data_range, rgba=False): | |
img = self.convert_data(img) | |
assert data_format in ["CHW", "HWC"] | |
if data_format == "CHW": | |
img = img.transpose(1, 2, 0) | |
if img.dtype != np.uint8: | |
img = img.clip(min=data_range[0], max=data_range[1]) | |
img = ( | |
(img - data_range[0]) / (data_range[1] - data_range[0]) * 255.0 | |
).astype(np.uint8) | |
nc = 4 if rgba else 3 | |
imgs = [img[..., start : start + nc] for start in range(0, img.shape[-1], nc)] | |
imgs = [ | |
( | |
img_ | |
if img_.shape[-1] == nc | |
else np.concatenate( | |
[ | |
img_, | |
np.zeros( | |
(img_.shape[0], img_.shape[1], nc - img_.shape[2]), | |
dtype=img_.dtype, | |
), | |
], | |
axis=-1, | |
) | |
) | |
for img_ in imgs | |
] | |
img = np.concatenate(imgs, axis=1) | |
if rgba: | |
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA) | |
else: | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
return img | |
def _save_rgb_image( | |
self, | |
filename, | |
img, | |
data_format, | |
data_range, | |
name: Optional[str] = None, | |
step: Optional[int] = None, | |
): | |
img = self.get_rgb_image_(img, data_format, data_range) | |
cv2.imwrite(filename, img) | |
if name and self._wandb_logger: | |
self._wandb_logger.log_image( | |
key=name, images=[self.get_save_path(filename)], step=step | |
) | |
def save_rgb_image( | |
self, | |
filename, | |
img, | |
data_format=DEFAULT_RGB_KWARGS["data_format"], | |
data_range=DEFAULT_RGB_KWARGS["data_range"], | |
name: Optional[str] = None, | |
step: Optional[int] = None, | |
) -> str: | |
save_path = self.get_save_path(filename) | |
self._save_rgb_image(save_path, img, data_format, data_range, name, step) | |
return save_path | |
def get_uv_image_(self, img, data_format, data_range, cmap): | |
img = self.convert_data(img) | |
assert data_format in ["CHW", "HWC"] | |
if data_format == "CHW": | |
img = img.transpose(1, 2, 0) | |
img = img.clip(min=data_range[0], max=data_range[1]) | |
img = (img - data_range[0]) / (data_range[1] - data_range[0]) | |
assert cmap in ["checkerboard", "color"] | |
if cmap == "checkerboard": | |
n_grid = 64 | |
mask = (img * n_grid).astype(int) | |
mask = (mask[..., 0] + mask[..., 1]) % 2 == 0 | |
img = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 255 | |
img[mask] = np.array([255, 0, 255], dtype=np.uint8) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
elif cmap == "color": | |
img_ = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) | |
img_[..., 0] = (img[..., 0] * 255).astype(np.uint8) | |
img_[..., 1] = (img[..., 1] * 255).astype(np.uint8) | |
img_ = cv2.cvtColor(img_, cv2.COLOR_RGB2BGR) | |
img = img_ | |
return img | |
def save_uv_image( | |
self, | |
filename, | |
img, | |
data_format=DEFAULT_UV_KWARGS["data_format"], | |
data_range=DEFAULT_UV_KWARGS["data_range"], | |
cmap=DEFAULT_UV_KWARGS["cmap"], | |
) -> str: | |
save_path = self.get_save_path(filename) | |
img = self.get_uv_image_(img, data_format, data_range, cmap) | |
cv2.imwrite(save_path, img) | |
return save_path | |
def get_grayscale_image_(self, img, data_range, cmap): | |
img = self.convert_data(img) | |
img = np.nan_to_num(img) | |
if data_range is None: | |
img = (img - img.min()) / (img.max() - img.min()) | |
else: | |
img = img.clip(data_range[0], data_range[1]) | |
img = (img - data_range[0]) / (data_range[1] - data_range[0]) | |
assert cmap in [None, "jet", "magma", "spectral"] | |
if cmap == None: | |
img = (img * 255.0).astype(np.uint8) | |
img = np.repeat(img[..., None], 3, axis=2) | |
elif cmap == "jet": | |
img = (img * 255.0).astype(np.uint8) | |
img = cv2.applyColorMap(img, cv2.COLORMAP_JET) | |
elif cmap == "magma": | |
img = 1.0 - img | |
base = cm.get_cmap("magma") | |
num_bins = 256 | |
colormap = LinearSegmentedColormap.from_list( | |
f"{base.name}{num_bins}", base(np.linspace(0, 1, num_bins)), num_bins | |
)(np.linspace(0, 1, num_bins))[:, :3] | |
a = np.floor(img * 255.0) | |
b = (a + 1).clip(max=255.0) | |
f = img * 255.0 - a | |
a = a.astype(np.uint16).clip(0, 255) | |
b = b.astype(np.uint16).clip(0, 255) | |
img = colormap[a] + (colormap[b] - colormap[a]) * f[..., None] | |
img = (img * 255.0).astype(np.uint8) | |
elif cmap == "spectral": | |
colormap = plt.get_cmap("Spectral") | |
def blend_rgba(image): | |
image = image[..., :3] * image[..., -1:] + ( | |
1.0 - image[..., -1:] | |
) # blend A to RGB | |
return image | |
img = colormap(img) | |
img = blend_rgba(img) | |
img = (img * 255).astype(np.uint8) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
return img | |
def _save_grayscale_image( | |
self, | |
filename, | |
img, | |
data_range, | |
cmap, | |
name: Optional[str] = None, | |
step: Optional[int] = None, | |
): | |
img = self.get_grayscale_image_(img, data_range, cmap) | |
cv2.imwrite(filename, img) | |
if name and self._wandb_logger: | |
self._wandb_logger.log_image( | |
key=name, images=[self.get_save_path(filename)], step=step | |
) | |
def save_grayscale_image( | |
self, | |
filename, | |
img, | |
data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"], | |
cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"], | |
name: Optional[str] = None, | |
step: Optional[int] = None, | |
) -> str: | |
save_path = self.get_save_path(filename) | |
self._save_grayscale_image(save_path, img, data_range, cmap, name, step) | |
return save_path | |
def get_image_grid_(self, imgs, align): | |
if isinstance(imgs[0], list): | |
return np.concatenate( | |
[self.get_image_grid_(row, align) for row in imgs], axis=0 | |
) | |
cols = [] | |
for col in imgs: | |
assert col["type"] in ["rgb", "uv", "grayscale"] | |
if col["type"] == "rgb": | |
rgb_kwargs = self.DEFAULT_RGB_KWARGS.copy() | |
rgb_kwargs.update(col["kwargs"]) | |
cols.append(self.get_rgb_image_(col["img"], **rgb_kwargs)) | |
elif col["type"] == "uv": | |
uv_kwargs = self.DEFAULT_UV_KWARGS.copy() | |
uv_kwargs.update(col["kwargs"]) | |
cols.append(self.get_uv_image_(col["img"], **uv_kwargs)) | |
elif col["type"] == "grayscale": | |
grayscale_kwargs = self.DEFAULT_GRAYSCALE_KWARGS.copy() | |
grayscale_kwargs.update(col["kwargs"]) | |
cols.append(self.get_grayscale_image_(col["img"], **grayscale_kwargs)) | |
if align == "max": | |
h = max([col.shape[0] for col in cols]) | |
elif align == "min": | |
h = min([col.shape[0] for col in cols]) | |
elif isinstance(align, int): | |
h = align | |
else: | |
raise ValueError( | |
f"Unsupported image grid align: {align}, should be min, max, or int" | |
) | |
for i in range(len(cols)): | |
if cols[i].shape[0] != h: | |
w = int(cols[i].shape[1] * h / cols[i].shape[0]) | |
cols[i] = cv2.resize(cols[i], (w, h), interpolation=cv2.INTER_CUBIC) | |
return np.concatenate(cols, axis=1) | |
def save_image_grid( | |
self, | |
filename, | |
imgs, | |
align=DEFAULT_GRID_KWARGS["align"], | |
name: Optional[str] = None, | |
step: Optional[int] = None, | |
texts: Optional[List[float]] = None, | |
): | |
save_path = self.get_save_path(filename) | |
img = self.get_image_grid_(imgs, align=align) | |
if texts is not None: | |
img = Image.fromarray(img) | |
draw = ImageDraw.Draw(img) | |
black, white = (0, 0, 0), (255, 255, 255) | |
for i, text in enumerate(texts): | |
draw.text((2, (img.size[1] // len(texts)) * i + 1), f"{text}", white) | |
draw.text((0, (img.size[1] // len(texts)) * i + 1), f"{text}", white) | |
draw.text((2, (img.size[1] // len(texts)) * i - 1), f"{text}", white) | |
draw.text((0, (img.size[1] // len(texts)) * i - 1), f"{text}", white) | |
draw.text((1, (img.size[1] // len(texts)) * i), f"{text}", black) | |
img = np.asarray(img) | |
cv2.imwrite(save_path, img) | |
if name and self._wandb_logger: | |
self._wandb_logger.log_image(key=name, images=[save_path], step=step) | |
return save_path | |
def save_image(self, filename, img) -> str: | |
save_path = self.get_save_path(filename) | |
img = self.convert_data(img) | |
assert img.dtype == np.uint8 or img.dtype == np.uint16 | |
if img.ndim == 3 and img.shape[-1] == 3: | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
elif img.ndim == 3 and img.shape[-1] == 4: | |
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA) | |
cv2.imwrite(save_path, img) | |
return save_path | |
def save_cubemap(self, filename, img, data_range=(0, 1), rgba=False) -> str: | |
save_path = self.get_save_path(filename) | |
img = self.convert_data(img) | |
assert img.ndim == 4 and img.shape[0] == 6 and img.shape[1] == img.shape[2] | |
imgs_full = [] | |
for start in range(0, img.shape[-1], 3): | |
img_ = img[..., start : start + 3] | |
img_ = np.stack( | |
[ | |
self.get_rgb_image_(img_[i], "HWC", data_range, rgba=rgba) | |
for i in range(img_.shape[0]) | |
], | |
axis=0, | |
) | |
size = img_.shape[1] | |
placeholder = np.zeros((size, size, 3), dtype=np.float32) | |
img_full = np.concatenate( | |
[ | |
np.concatenate( | |
[placeholder, img_[2], placeholder, placeholder], axis=1 | |
), | |
np.concatenate([img_[1], img_[4], img_[0], img_[5]], axis=1), | |
np.concatenate( | |
[placeholder, img_[3], placeholder, placeholder], axis=1 | |
), | |
], | |
axis=0, | |
) | |
imgs_full.append(img_full) | |
imgs_full = np.concatenate(imgs_full, axis=1) | |
cv2.imwrite(save_path, imgs_full) | |
return save_path | |
def save_data(self, filename, data) -> str: | |
data = self.convert_data(data) | |
if isinstance(data, dict): | |
if not filename.endswith(".npz"): | |
filename += ".npz" | |
save_path = self.get_save_path(filename) | |
np.savez(save_path, **data) | |
else: | |
if not filename.endswith(".npy"): | |
filename += ".npy" | |
save_path = self.get_save_path(filename) | |
np.save(save_path, data) | |
return save_path | |
def save_state_dict(self, filename, data) -> str: | |
save_path = self.get_save_path(filename) | |
torch.save(data, save_path) | |
return save_path | |
def save_img_sequence( | |
self, | |
filename, | |
img_dir, | |
matcher, | |
save_format="mp4", | |
fps=30, | |
name: Optional[str] = None, | |
step: Optional[int] = None, | |
) -> str: | |
assert save_format in ["gif", "mp4"] | |
if not filename.endswith(save_format): | |
filename += f".{save_format}" | |
save_path = self.get_save_path(filename) | |
matcher = re.compile(matcher) | |
img_dir = os.path.join(self.get_save_dir(), img_dir) | |
imgs = [] | |
for f in os.listdir(img_dir): | |
if matcher.search(f): | |
imgs.append(f) | |
imgs = sorted(imgs, key=lambda f: int(matcher.search(f).groups()[0])) | |
imgs = [cv2.imread(os.path.join(img_dir, f)) for f in imgs] | |
if save_format == "gif": | |
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs] | |
imageio.mimsave(save_path, imgs, fps=fps, palettesize=256) | |
elif save_format == "mp4": | |
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs] | |
imageio.mimsave(save_path, imgs, fps=fps) | |
if name and self._wandb_logger: | |
from .core import warn | |
warn("Wandb logger does not support video logging yet!") | |
return save_path | |
def save_img_sequences( | |
self, | |
seq_dir, | |
matcher, | |
save_format="mp4", | |
fps=30, | |
delete=True, | |
name: Optional[str] = None, | |
step: Optional[int] = None, | |
): | |
seq_dir_ = os.path.join(self.get_save_dir(), seq_dir) | |
for f in os.listdir(seq_dir_): | |
img_dir_ = os.path.join(seq_dir_, f) | |
if not os.path.isdir(img_dir_): | |
continue | |
try: | |
self.save_img_sequence( | |
os.path.join(seq_dir, f), | |
os.path.join(seq_dir, f), | |
matcher, | |
save_format=save_format, | |
fps=fps, | |
name=f"{name}_{f}", | |
step=step, | |
) | |
if delete: | |
shutil.rmtree(img_dir_) | |
except: | |
from .core import warn | |
warn(f"Video saving for directory {seq_dir_} failed!") | |
def save_file(self, filename, src_path, delete=False) -> str: | |
save_path = self.get_save_path(filename) | |
shutil.copyfile(src_path, save_path) | |
if delete: | |
os.remove(src_path) | |
return save_path | |
def save_json(self, filename, payload) -> str: | |
save_path = self.get_save_path(filename) | |
with open(save_path, "w") as f: | |
f.write(json.dumps(payload)) | |
return save_path | |