Step3 / app.py
Zenith Wang
使用官方示例代码结构,简化实现,固定依赖版本
b34c488
raw
history blame
7.41 kB
import gradio as gr
import time
import base64
from openai import OpenAI
import os
from io import BytesIO
from PIL import Image
# 配置
BASE_URL = "https://api.stepfun.com/v1"
# 从环境变量获取API密钥
STEP_API_KEY = os.environ.get("STEP_API_KEY", "")
# 可选模型
MODELS = ["step-3", "step-r1-v-mini"]
def image_to_base64(image):
"""将PIL图像转换为base64字符串"""
if image is None:
return None
if isinstance(image, Image.Image):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
return None
def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
"""调用Step API进行分析,支持纯文本和图像+文本"""
if not prompt:
yield "", "❌ 请输入提示词"
return
if not STEP_API_KEY:
yield "", "❌ API密钥未配置。请在 Hugging Face Space 的 Settings 中添加 STEP_API_KEY 环境变量。"
return
# 构造消息内容 - 参考官方示例
if image is not None:
# 有图片的情况
try:
base64_image = image_to_base64(image)
if base64_image is None:
yield "", "❌ 图片处理失败"
return
# 按照官方示例的格式构造消息
messages = [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": f"data:image/jpg;base64,{base64_image}", "detail": "high"}},
{"type": "text", "text": prompt}
]}
]
except Exception as e:
yield "", f"❌ 图片处理错误: {str(e)}"
return
else:
# 纯文本的情况
messages = [
{"role": "user", "content": prompt}
]
# 创建OpenAI客户端 - 完全按照官方示例
try:
client = OpenAI(api_key=STEP_API_KEY, base_url=BASE_URL)
except Exception as e:
yield "", f"❌ 客户端初始化失败: {str(e)}"
return
# 记录开始时间
start_time = time.time()
try:
# 调用API - 按照官方示例
response = client.chat.completions.create(
model=model,
messages=messages,
stream=True
)
except Exception as e:
yield "", f"❌ API请求失败: {str(e)}"
return
# 处理流式响应
full_response = ""
reasoning_content = ""
final_answer = ""
is_reasoning = False
reasoning_started = False
try:
for chunk in response:
# 按照官方示例处理chunk
if chunk.choices and len(chunk.choices) > 0:
delta = chunk.choices[0].delta
if hasattr(delta, 'content') and delta.content:
content = delta.content
full_response += content
# 检测reasoning标记
if "<reasoning>" in content:
is_reasoning = True
reasoning_started = True
# 处理标记前后的内容
parts = content.split("<reasoning>")
if parts[0]:
final_answer += parts[0]
if len(parts) > 1:
reasoning_content += parts[1]
elif "</reasoning>" in content:
# 处理结束标记
parts = content.split("</reasoning>")
if parts[0]:
reasoning_content += parts[0]
is_reasoning = False
if len(parts) > 1:
final_answer += parts[1]
elif is_reasoning:
reasoning_content += content
else:
final_answer += content
# 实时输出
yield reasoning_content, final_answer
except Exception as e:
yield reasoning_content, final_answer + f"\n\n❌ 流处理错误: {str(e)}"
return
# 添加生成时间
elapsed_time = time.time() - start_time
time_info = f"\n\n⏱️ 生成用时: {elapsed_time:.2f}秒"
final_answer += time_info
yield reasoning_content, final_answer
# 创建Gradio界面
with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🤖 Step-3
""")
with gr.Row():
with gr.Column(scale=1):
# 输入区域
image_input = gr.Image(
label="上传图片(可选)",
type="pil",
height=300
)
prompt_input = gr.Textbox(
label="提示词",
placeholder="输入你的问题或描述...",
lines=3,
value=""
)
with gr.Accordion("高级设置", open=False):
model_select = gr.Dropdown(
choices=MODELS,
value=MODELS[0],
label="选择模型"
)
temperature_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens_slider = gr.Slider(
minimum=100,
maximum=4000,
value=2000,
step=100,
label="最大输出长度"
)
submit_btn = gr.Button("🚀 开始分析", variant="primary")
clear_btn = gr.Button("🗑️ 清空", variant="secondary")
with gr.Column(scale=1):
# 推理过程展示
with gr.Accordion("💭 推理过程 (CoT)", open=True):
reasoning_output = gr.Textbox(
label="思考过程",
lines=10,
max_lines=15,
show_copy_button=True,
interactive=False
)
# 最终答案展示
answer_output = gr.Textbox(
label="📝 分析结果",
lines=15,
max_lines=25,
show_copy_button=True,
interactive=False
)
# 事件处理 - 流式输出到两个文本框
submit_btn.click(
fn=call_step_api,
inputs=[
image_input,
prompt_input,
model_select,
temperature_slider,
max_tokens_slider
],
outputs=[reasoning_output, answer_output],
show_progress=True
)
clear_btn.click(
fn=lambda: (None, "", "", ""),
inputs=[],
outputs=[image_input, prompt_input, reasoning_output, answer_output]
)
# 页脚
gr.Markdown("""
---
Powered by [Step-3](https://www.stepfun.com/)
""")
# 启动应用
if __name__ == "__main__":
demo.launch()