Upload app.py
#1
by
KK00001
- opened
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
|
5 |
+
# ✅ Load Model & Scaler from Specific Path
|
6 |
+
model_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\lr.pkl")
|
7 |
+
scaler_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\scaler.pkl")
|
8 |
+
|
9 |
+
lr = joblib.load(model_path)
|
10 |
+
scaler = joblib.load(scaler_path)
|
11 |
+
|
12 |
+
st.title("Diabetes Disease Progression Predictor")
|
13 |
+
st.write("Enter the following patient details:")
|
14 |
+
|
15 |
+
# Input Features
|
16 |
+
features = ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
|
17 |
+
inputs = []
|
18 |
+
|
19 |
+
for feature in features:
|
20 |
+
val = st.number_input(f"{feature}", value=0.0, step=0.01, format="%.2f")
|
21 |
+
inputs.append(val)
|
22 |
+
|
23 |
+
# Predict Button
|
24 |
+
if st.button("Predict Disease Progression"):
|
25 |
+
data = np.array([inputs])
|
26 |
+
scaled_data = scaler.transform(data)
|
27 |
+
prediction = lr.predict(scaled_data)
|
28 |
+
st.success(f"Predicted Disease Progression Score: {prediction[0]:.2f}")
|