Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -40,12 +40,11 @@ st.markdown(custom_style, unsafe_allow_html=True)
|
|
40 |
|
41 |
|
42 |
# Function to perform inference
|
43 |
-
def perform_inference(
|
44 |
-
image = cv2.imread(img, cv2.IMREAD_COLOR)
|
45 |
original_shape = image.shape[:2]
|
46 |
original_image = image.copy()
|
47 |
image = cv2.resize(image, (W, H))
|
48 |
-
image = image/255.0
|
49 |
image = np.expand_dims(image, axis=0)
|
50 |
|
51 |
mask = model.predict(image, verbose=0)[0]
|
@@ -70,8 +69,11 @@ def main():
|
|
70 |
uploaded_file = st.file_uploader("Upload a brain tumor image...", type=["jpg", "png", "jpeg"])
|
71 |
|
72 |
if uploaded_file is not None:
|
|
|
|
|
|
|
73 |
# Perform inference on the uploaded image
|
74 |
-
original_image, mask, segmented_image = perform_inference(
|
75 |
|
76 |
# Display original image
|
77 |
st.subheader("Original Image")
|
|
|
40 |
|
41 |
|
42 |
# Function to perform inference
|
43 |
+
def perform_inference(image):
|
|
|
44 |
original_shape = image.shape[:2]
|
45 |
original_image = image.copy()
|
46 |
image = cv2.resize(image, (W, H))
|
47 |
+
image = image / 255.0
|
48 |
image = np.expand_dims(image, axis=0)
|
49 |
|
50 |
mask = model.predict(image, verbose=0)[0]
|
|
|
69 |
uploaded_file = st.file_uploader("Upload a brain tumor image...", type=["jpg", "png", "jpeg"])
|
70 |
|
71 |
if uploaded_file is not None:
|
72 |
+
# Read the uploaded image
|
73 |
+
image = cv2.imdecode(np.fromstring(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR)
|
74 |
+
|
75 |
# Perform inference on the uploaded image
|
76 |
+
original_image, mask, segmented_image = perform_inference(image)
|
77 |
|
78 |
# Display original image
|
79 |
st.subheader("Original Image")
|