Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,456 Bytes
25dc731 05566a8 25dc731 05566a8 25dc731 b7a8eef 189dfd8 60fa434 05566a8 60fa434 fa0e345 b7a8eef 60fa434 25dc731 a950033 89f17cd 25dc731 60fa434 189dfd8 25dc731 05566a8 25dc731 05566a8 60fa434 89f17cd 05566a8 a950033 25dc731 05566a8 60fa434 05566a8 25dc731 a950033 05566a8 25dc731 05566a8 25dc731 fa0e345 05566a8 fa0e345 05566a8 fa0e345 05566a8 fa0e345 25dc731 60fa434 05566a8 b7a8eef 25dc731 05566a8 60fa434 25dc731 05566a8 25dc731 b7a8eef 05566a8 60fa434 05566a8 25dc731 05566a8 25dc731 05566a8 25dc731 189dfd8 b7a8eef 05566a8 25dc731 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 a950033 05566a8 60fa434 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 60fa434 05566a8 60fa434 05566a8 60fa434 05566a8 fa0e345 05566a8 ca298ac 05566a8 fa0e345 ca298ac 05566a8 189dfd8 05566a8 ca298ac 05566a8 ca298ac 60fa434 05566a8 a950033 60fa434 05566a8 60fa434 05566a8 60fa434 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 60fa434 05566a8 ca298ac fa0e345 05566a8 ca298ac 189dfd8 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 60fa434 05566a8 a950033 05566a8 ca298ac 05566a8 ca298ac 05566a8 a950033 05566a8 189dfd8 05566a8 189dfd8 05566a8 a950033 05566a8 fa0e345 05566a8 fa0e345 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 fa0e345 60fa434 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 60fa434 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 05566a8 ca298ac 25dc731 fa0e345 25dc731 05566a8 25dc731 ca298ac 05566a8 ca298ac 05566a8 ca298ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
import warnings
import contextlib
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, pipeline
import librosa
import numpy as np
# Optional transliteration
try:
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
INDIC_OK = True
except:
INDIC_OK = False
print("⚠️ indic_transliteration not available. Transliteration features disabled.")
# Optional HF Spaces GPU decorator
try:
import spaces
GPU_DECORATOR = spaces.GPU
except:
class _NoOp:
def __call__(self, f): return f
GPU_DECORATOR = _NoOp()
warnings.filterwarnings("ignore")
# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEVICE_INDEX = 0 if DEVICE == "cuda" else -1
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
amp_ctx = torch.cuda.amp.autocast if DEVICE == "cuda" else contextlib.nullcontext
print(f"🔧 Using device: {DEVICE}")
LANG_CODES = {
"English": "en",
"Tamil": "ta",
"Malayalam": "ml",
"Hindi": "hi"
}
# Primary: IndicWhisper
INDICWHISPER_MODEL = "parthiv11/indic_whisper_nodcil"
# Specialized models for better accuracy
SPECIALIZED_MODELS = {
"English": "openai/whisper-base.en",
"Tamil": "vasista22/whisper-tamil-large-v2",
"Malayalam": "thennal/whisper-medium-ml",
"Hindi": "openai/whisper-large-v2" # Using general model for Hindi
}
SCRIPT_PATTERNS = {
"Tamil": re.compile(r"[-]"),
"Malayalam": re.compile(r"[ഀ-ൿ]"),
"Hindi": re.compile(r"[ऀ-ॿ]"),
"English": re.compile(r"[A-Za-z]")
}
# Transliteration mappings
TRANSLITERATION_SCRIPTS = {
"Tamil": sanscript.TAMIL,
"Malayalam": sanscript.MALAYALAM,
"Hindi": sanscript.DEVANAGARI,
"English": None
}
SENTENCE_BANK = {
"English": [
"The sun sets over the horizon.",
"Learning languages is fun and rewarding.",
"I like to drink coffee in the morning.",
"Technology helps us connect with others.",
"Reading books expands our knowledge."
],
"Tamil": [
"இன்று நல்ல வானிலை உள்ளது.",
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
"காலையில் காபி குடிக்க பிடிக்கும்.",
"நண்பர்களுடன் பேசுவது மகிழ்ச்சி."
],
"Malayalam": [
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
"ഇന്ന് മഴപെയ്യുന്നു.",
"ഞാൻ പുസ്തകം വായിക്കുന്നു.",
"കാലയിൽ ചായ കുടിക്കാൻ ഇഷ്ടമാണ്.",
"സുഹൃത്തുക്കളോടു സംസാരിക്കുന്നത് സന്തോഷമാണ്."
],
"Hindi": [
"आज मौसम अच्छा है।",
"मुझे हिंदी बोलना पसंद है।",
"मैं किताब पढ़ रहा हूँ।",
"सुबह चाय पीना अच्छा लगता है।",
"दोस्तों के साथ बात करना खुशी देता है।"
]
}
# Model cache
primary_pipeline = None
specialized_models = {}
# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
return random.choice(SENTENCE_BANK[language_choice])
def is_correct_script(text, lang_name):
"""Check if text contains the expected script for the language"""
if not text.strip():
return False
pattern = SCRIPT_PATTERNS.get(lang_name)
if not pattern:
return True
return bool(pattern.search(text))
def transliterate_text(text, lang_choice, to_romanized=True):
"""Transliterate text to/from romanized form"""
if not INDIC_OK or not text.strip():
return text
source_script = TRANSLITERATION_SCRIPTS.get(lang_choice)
if not source_script:
return text
try:
if to_romanized:
# Convert to Harvard-Kyoto (romanized)
return transliterate(text, source_script, sanscript.HK)
else:
# Convert from romanized to native script (if needed)
return transliterate(text, sanscript.HK, source_script)
except Exception as e:
print(f"⚠️ Transliteration failed: {e}")
return text
def preprocess_audio(audio_path, target_sr=16000):
"""Enhanced audio preprocessing"""
try:
audio, sr = librosa.load(audio_path, sr=target_sr, mono=True)
if audio is None or len(audio) == 0:
return None, None
# Normalize audio
audio = audio.astype(np.float32)
max_val = np.max(np.abs(audio))
if max_val > 0:
audio = audio / max_val
# Trim silence
audio, _ = librosa.effects.trim(audio, top_db=20)
# Check minimum length (0.1 seconds)
if len(audio) < int(target_sr * 0.1):
return None, None
return audio, target_sr
except Exception as e:
print(f"⚠️ Audio preprocessing failed: {e}")
return None, None
# ---------------- MODEL LOADERS ---------------- #
@GPU_DECORATOR
def load_primary_model():
"""Load the primary IndicWhisper model"""
global primary_pipeline
if primary_pipeline is not None:
return primary_pipeline
try:
print(f"🔄 Loading primary model: {INDICWHISPER_MODEL}")
# Try direct loading first
primary_pipeline = pipeline(
"automatic-speech-recognition",
model=INDICWHISPER_MODEL,
device=DEVICE_INDEX,
torch_dtype=DTYPE,
trust_remote_code=True
)
print("✅ Primary model loaded successfully!")
return primary_pipeline
except Exception as e:
print(f"⚠️ Primary model failed, using fallback: {e}")
# Fallback to base Whisper
primary_pipeline = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v2",
device=DEVICE_INDEX,
torch_dtype=DTYPE
)
print("✅ Fallback model loaded!")
return primary_pipeline
@GPU_DECORATOR
def load_specialized_model(language):
"""Load specialized model for specific language"""
if language in specialized_models:
return specialized_models[language]
model_name = SPECIALIZED_MODELS[language]
print(f"🔄 Loading specialized {language} model: {model_name}")
try:
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_name,
torch_dtype=DTYPE,
device_map="auto" if DEVICE == "cuda" else None
).to(DEVICE)
specialized_models[language] = {
"processor": processor,
"model": model
}
print(f"✅ Specialized {language} model loaded!")
return specialized_models[language]
except Exception as e:
print(f"❌ Failed to load specialized {language} model: {e}")
return None
# ---------------- TRANSCRIPTION ---------------- #
@GPU_DECORATOR
def transcribe_with_primary(audio_path, language):
"""Transcribe using primary IndicWhisper model"""
try:
pipeline_model = load_primary_model()
lang_code = LANG_CODES[language]
# Set language forcing if possible
try:
if hasattr(pipeline_model, "model") and hasattr(pipeline_model, "tokenizer"):
forced_ids = pipeline_model.tokenizer.get_decoder_prompt_ids(
language=lang_code,
task="transcribe"
)
if forced_ids:
pipeline_model.model.config.forced_decoder_ids = forced_ids
except Exception as e:
print(f"⚠️ Language forcing failed: {e}")
with amp_ctx():
result = pipeline_model(audio_path)
if isinstance(result, dict):
return result.get("text", "").strip()
return str(result).strip()
except Exception as e:
return f"Primary transcription error: {str(e)}"
@GPU_DECORATOR
def transcribe_with_specialized(audio_path, language):
"""Transcribe using specialized model"""
try:
model_components = load_specialized_model(language)
if not model_components:
return "Specialized model not available"
# Preprocess audio
audio, sr = preprocess_audio(audio_path)
if audio is None:
return "Audio preprocessing failed"
# Process with specialized model
inputs = model_components["processor"](
audio,
sampling_rate=sr,
return_tensors="pt"
)
input_features = inputs.input_features.to(DEVICE)
# Generation parameters
gen_kwargs = {
"inputs": input_features,
"max_length": 200,
"num_beams": 3,
"do_sample": False
}
# Language forcing for non-English
if language != "English":
try:
forced_ids = model_components["processor"].tokenizer.get_decoder_prompt_ids(
language=LANG_CODES[language],
task="transcribe"
)
if forced_ids:
gen_kwargs["forced_decoder_ids"] = forced_ids
except Exception as e:
print(f"⚠️ Specialized language forcing failed: {e}")
# Generate transcription
with torch.no_grad(), amp_ctx():
generated_ids = model_components["model"].generate(**gen_kwargs)
# Decode result
transcription = model_components["processor"].batch_decode(
generated_ids,
skip_special_tokens=True
)[0]
return transcription.strip()
except Exception as e:
return f"Specialized transcription error: {str(e)}"
# ---------------- ANALYSIS ---------------- #
def compute_metrics(reference, hypothesis):
"""Compute WER and CER with error handling"""
try:
# Clean up texts
ref_clean = reference.strip()
hyp_clean = hypothesis.strip()
if not ref_clean or not hyp_clean:
return 1.0, 1.0
# Compute WER and CER
wer = jiwer.wer(ref_clean, hyp_clean)
cer = jiwer.cer(ref_clean, hyp_clean)
return wer, cer
except Exception as e:
print(f"⚠️ Metric computation failed: {e}")
return 1.0, 1.0
def get_pronunciation_score(wer, cer):
"""Convert error rates to intuitive scores and feedback"""
# Weighted combination (WER is more important)
combined_error = (wer * 0.7) + (cer * 0.3)
accuracy = 1 - combined_error
if accuracy >= 0.95:
return "🏆 Perfect!", "Outstanding pronunciation! Native-like accuracy.", "#d4edda"
elif accuracy >= 0.85:
return "🎉 Excellent!", "Very good pronunciation with minor variations.", "#d1ecf1"
elif accuracy >= 0.70:
return "👍 Good!", "Good pronunciation, practice specific sounds.", "#fff3cd"
elif accuracy >= 0.50:
return "📚 Needs Practice", "Focus on clearer pronunciation and rhythm.", "#f8d7da"
else:
return "💪 Keep Trying!", "Break down into smaller parts and practice slowly.", "#f5c6cb"
def create_detailed_comparison(intended, actual, lang_choice):
"""Create detailed side-by-side comparison with transliteration"""
# Original scripts
intended_orig = intended.strip()
actual_orig = actual.strip()
# Transliterations
intended_translit = transliterate_text(intended_orig, lang_choice, to_romanized=True)
actual_translit = transliterate_text(actual_orig, lang_choice, to_romanized=True)
# Word-level highlighting
word_diff_orig = highlight_word_differences(intended_orig, actual_orig)
word_diff_translit = highlight_word_differences(intended_translit, actual_translit)
# Character-level highlighting
char_diff_orig = highlight_char_differences(intended_orig, actual_orig)
char_diff_translit = highlight_char_differences(intended_translit, actual_translit)
return {
"intended_orig": intended_orig,
"actual_orig": actual_orig,
"intended_translit": intended_translit,
"actual_translit": actual_translit,
"word_diff_orig": word_diff_orig,
"word_diff_translit": word_diff_translit,
"char_diff_orig": char_diff_orig,
"char_diff_translit": char_diff_translit
}
def highlight_word_differences(reference, hypothesis):
"""Highlight word-level differences with colors"""
ref_words = reference.split()
hyp_words = hypothesis.split()
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
html_output = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
# Correct words - green background
html_output.extend([
f"<span style='background-color:#d4edda; color:#155724; padding:2px 4px; margin:1px; border-radius:3px'>{word}</span>"
for word in ref_words[i1:i2]
])
elif tag == 'replace':
# Wrong words - red background for reference, orange for hypothesis
html_output.extend([
f"<span style='background-color:#f8d7da; color:#721c24; padding:2px 4px; margin:1px; border-radius:3px; text-decoration:line-through'>{word}</span>"
for word in ref_words[i1:i2]
])
html_output.extend([
f"<span style='background-color:#fff3cd; color:#856404; padding:2px 4px; margin:1px; border-radius:3px'>→{word}</span>"
for word in hyp_words[j1:j2]
])
elif tag == 'delete':
# Missing words - red background
html_output.extend([
f"<span style='background-color:#f8d7da; color:#721c24; padding:2px 4px; margin:1px; border-radius:3px; text-decoration:line-through'>{word}</span>"
for word in ref_words[i1:i2]
])
elif tag == 'insert':
# Extra words - orange background
html_output.extend([
f"<span style='background-color:#fff3cd; color:#856404; padding:2px 4px; margin:1px; border-radius:3px'>+{word}</span>"
for word in hyp_words[j1:j2]
])
return " ".join(html_output)
def highlight_char_differences(reference, hypothesis):
"""Highlight character-level differences"""
sm = difflib.SequenceMatcher(None, list(reference), list(hypothesis))
html_output = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
# Correct characters - green
html_output.extend([
f"<span style='color:#28a745'>{char}</span>"
for char in reference[i1:i2]
])
elif tag in ('replace', 'delete'):
# Wrong/missing characters - red with underline
html_output.extend([
f"<span style='color:#dc3545; text-decoration:underline; font-weight:bold'>{char}</span>"
for char in reference[i1:i2]
])
elif tag == 'insert':
# Extra characters - orange
html_output.extend([
f"<span style='color:#fd7e14; font-weight:bold'>{char}</span>"
for char in hypothesis[j1:j2]
])
return "".join(html_output)
def analyze_pronunciation_errors(intended, actual, lang_choice):
"""Provide specific feedback about pronunciation errors"""
comparison = create_detailed_comparison(intended, actual, lang_choice)
# Analyze error patterns
intended_words = intended.split()
actual_words = actual.split()
error_analysis = []
# Length difference analysis
if len(actual_words) < len(intended_words):
missing_count = len(intended_words) - len(actual_words)
error_analysis.append(f"🔍 You missed {missing_count} word(s). Try speaking more slowly.")
elif len(actual_words) > len(intended_words):
extra_count = len(actual_words) - len(intended_words)
error_analysis.append(f"🔍 You added {extra_count} extra word(s). Focus on the exact sentence.")
# Script verification
if not is_correct_script(actual, lang_choice):
error_analysis.append(f"⚠️ The transcription doesn't contain {lang_choice} script. Check your pronunciation.")
# WER/CER based feedback
wer, cer = compute_metrics(intended, actual)
if wer > 0.5:
error_analysis.append("🎯 Focus on pronouncing each word clearly and separately.")
elif wer > 0.3:
error_analysis.append("🎯 Good overall, but some words need clearer pronunciation.")
if cer > 0.3:
error_analysis.append("🔤 Pay attention to individual sounds and syllables.")
return error_analysis, comparison
# ---------------- MAIN FUNCTION ---------------- #
@GPU_DECORATOR
def compare_pronunciation(audio, language_choice, intended_sentence):
"""Main function to analyze pronunciation"""
if audio is None:
return ("❌ Please record audio first", "", "", "", "", "", "", "", "", "", "")
if not intended_sentence.strip():
return ("❌ Please generate a sentence first", "", "", "", "", "", "", "", "", "", "")
print(f"🔍 Analyzing pronunciation for {language_choice}...")
# Get transcriptions from both models
primary_result = transcribe_with_primary(audio, language_choice)
specialized_result = transcribe_with_specialized(audio, language_choice)
# Choose best result (prefer specialized if successful)
if not specialized_result.startswith("Specialized") and specialized_result.strip():
best_transcription = specialized_result
best_source = "Specialized Model"
elif not primary_result.startswith("Primary") and primary_result.strip():
best_transcription = primary_result
best_source = "Primary Model"
else:
return (
f"❌ Both models failed:\nPrimary: {primary_result}\nSpecialized: {specialized_result}",
"", "", "", "", "", "", "", "", "", ""
)
# Analyze pronunciation
error_analysis, comparison = analyze_pronunciation_errors(
intended_sentence, best_transcription, language_choice
)
# Compute metrics
wer, cer = compute_metrics(intended_sentence, best_transcription)
score, feedback, color = get_pronunciation_score(wer, cer)
# Create status message
status_msg = f"""✅ Analysis Complete!
{score}
{feedback}
🤖 Best result from: {best_source}
📊 Word Accuracy: {(1-wer)*100:.1f}%
📈 Character Accuracy: {(1-cer)*100:.1f}%
🔍 Analysis:
""" + "\n".join(error_analysis)
return (
status_msg,
primary_result,
specialized_result,
f"{wer:.3f} ({(1-wer)*100:.1f}%)",
f"{cer:.3f} ({(1-cer)*100:.1f}%)",
comparison["intended_orig"],
comparison["actual_orig"],
comparison["intended_translit"],
comparison["actual_translit"],
comparison["word_diff_orig"],
comparison["char_diff_orig"]
)
# ---------------- UI ---------------- #
def create_interface():
with gr.Blocks(title="Enhanced Pronunciation Comparator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎙️ Enhanced Pronunciation Comparator
**Perfect your pronunciation in English, Tamil, Malayalam, and Hindi!**
This tool uses specialized AI models to give you detailed feedback on your pronunciation,
including transliteration to help you understand exactly where you need improvement.
### How to use:
1. 🌐 Select your target language
2. 🎲 Generate a practice sentence
3. 🎤 Record yourself saying the sentence clearly
4. 🔍 Get detailed pronunciation analysis with transliteration
""")
with gr.Row():
with gr.Column(scale=2):
language_dropdown = gr.Dropdown(
choices=list(LANG_CODES.keys()),
value="Tamil",
label="🌐 Select Language"
)
with gr.Column(scale=1):
generate_btn = gr.Button("🎲 Generate Practice Sentence", variant="primary")
intended_textbox = gr.Textbox(
label="📝 Practice Sentence",
interactive=False,
lines=2,
placeholder="Click 'Generate Practice Sentence' to get started..."
)
audio_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="🎤 Record Your Pronunciation"
)
analyze_btn = gr.Button("🔍 Analyze Pronunciation", variant="secondary", size="lg")
with gr.Row():
status_output = gr.Textbox(
label="📊 Analysis Results",
interactive=False,
lines=8
)
with gr.Accordion("🤖 Model Outputs", open=False):
with gr.Row():
primary_output = gr.Textbox(label="Primary Model (IndicWhisper)", interactive=False)
specialized_output = gr.Textbox(label="Specialized Model", interactive=False)
with gr.Accordion("📈 Detailed Metrics", open=False):
with gr.Row():
wer_output = gr.Textbox(label="Word Error Rate", interactive=False)
cer_output = gr.Textbox(label="Character Error Rate", interactive=False)
gr.Markdown("### 🔍 Detailed Comparison")
with gr.Row():
with gr.Column():
gr.Markdown("#### 📝 Original Script")
intended_orig = gr.Textbox(label="🎯 Target Text", interactive=False)
actual_orig = gr.Textbox(label="🗣️ What You Said", interactive=False)
with gr.Column():
gr.Markdown("#### 🔤 Romanized (Transliterated)")
intended_translit = gr.Textbox(label="🎯 Target (Romanized)", interactive=False)
actual_translit = gr.Textbox(label="🗣️ What You Said (Romanized)", interactive=False)
gr.Markdown("### 🎨 Visual Comparison")
gr.Markdown("**Green** = Correct, **Red** = Wrong/Missing, **Orange** = Added/Substituted")
word_diff_html = gr.HTML(label="🔤 Word-by-Word Comparison")
char_diff_html = gr.HTML(label="🔍 Character-by-Character Analysis")
# Event handlers
generate_btn.click(
fn=get_random_sentence,
inputs=[language_dropdown],
outputs=[intended_textbox]
)
analyze_btn.click(
fn=compare_pronunciation,
inputs=[audio_input, language_dropdown, intended_textbox],
outputs=[
status_output, primary_output, specialized_output,
wer_output, cer_output, intended_orig, actual_orig,
intended_translit, actual_translit, word_diff_html, char_diff_html
]
)
language_dropdown.change(
fn=get_random_sentence,
inputs=[language_dropdown],
outputs=[intended_textbox]
)
gr.Markdown("""
### 📚 Pro Tips for Better Pronunciation:
- **Speak slowly and clearly** - Don't rush through the sentence
- **Pronounce each syllable** - Break down complex words
- **Check the romanized version** - Use it to understand correct pronunciation
- **Practice repeatedly** - Use the same sentence multiple times to track improvement
- **Focus on problem areas** - Pay attention to red-highlighted parts
- **Record in a quiet environment** - Minimize background noise
### 🎯 Understanding the Feedback:
- **Green highlights** = Perfect pronunciation ✅
- **Red highlights** = Missing or mispronounced ❌
- **Orange highlights** = Added or substituted 🔄
- **Transliteration** = Helps you see pronunciation patterns
- **Error rates** = Lower is better (0% = perfect)
""")
return demo
# ---------------- LAUNCH ---------------- #
if __name__ == "__main__":
print("🚀 Starting Enhanced Pronunciation Comparator...")
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
) |