File size: 11,154 Bytes
25dc731
189dfd8
25dc731
 
189dfd8
60fa434
b7a8eef
189dfd8
60fa434
 
 
 
 
 
 
189dfd8
b7a8eef
 
 
60fa434
 
 
 
25dc731
a950033
89f17cd
25dc731
 
60fa434
 
189dfd8
25dc731
 
189dfd8
25dc731
189dfd8
60fa434
89f17cd
189dfd8
a950033
25dc731
89f17cd
60fa434
25dc731
 
189dfd8
25dc731
 
a950033
60fa434
25dc731
 
189dfd8
 
 
25dc731
 
60fa434
89f17cd
 
60fa434
b7a8eef
 
25dc731
 
 
 
189dfd8
 
25dc731
 
60fa434
 
189dfd8
25dc731
 
189dfd8
 
25dc731
 
 
 
b7a8eef
189dfd8
60fa434
189dfd8
 
25dc731
189dfd8
25dc731
189dfd8
89f17cd
189dfd8
 
 
 
 
 
 
 
 
25dc731
189dfd8
b7a8eef
60fa434
 
189dfd8
25dc731
189dfd8
 
60fa434
189dfd8
60fa434
 
189dfd8
 
 
 
 
a950033
60fa434
 
189dfd8
60fa434
189dfd8
 
 
 
60fa434
 
 
 
 
 
189dfd8
60fa434
189dfd8
 
 
60fa434
 
 
 
 
189dfd8
 
 
60fa434
 
 
a950033
60fa434
 
 
189dfd8
60fa434
189dfd8
 
 
 
60fa434
 
189dfd8
 
60fa434
189dfd8
 
 
60fa434
 
 
a950033
60fa434
 
189dfd8
 
 
 
a950033
189dfd8
60fa434
189dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a950033
60fa434
 
189dfd8
 
60fa434
189dfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25dc731
 
 
 
60fa434
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import gradio as gr
import random, difflib, re, warnings, contextlib
import torch
import numpy as np
import librosa, soundfile as sf
import jiwer

# Optional transliteration
try:
    from indic_transliteration import sanscript
    from indic_transliteration.sanscript import transliterate
    INDIC_OK = True
except:
    INDIC_OK = False

# Optional HF Spaces decorator
try:
    import spaces
    GPU_DECORATOR = spaces.GPU
except:
    class _NoOp:
        def __call__(self, f): return f
    GPU_DECORATOR = _NoOp()

warnings.filterwarnings("ignore")

# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEVICE_INDEX = 0 if DEVICE == "cuda" else -1
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
amp_ctx = torch.cuda.amp.autocast if DEVICE == "cuda" else contextlib.nullcontext
print(f"🔧 Using device: {DEVICE}")

LANG_CODES = {"English": "en", "Tamil": "ta", "Malayalam": "ml"}

# Primary: IndicWhisper
INDICWHISPER_MODEL = "parthiv11/indic_whisper_nodcil"

# Specialised fallbacks
SPECIALIZED_MODELS = {
    "English": "openai/whisper-base.en",
    "Tamil": "vasista22/whisper-tamil-large-v2",
    "Malayalam": "thennal/whisper-medium-ml",
}

# Scripts and banking
SCRIPT_PATTERNS = {
    "Tamil": re.compile(r"[஀-௿]"),
    "Malayalam": re.compile(r"[ഀ-ൿ]"),
    "English": re.compile(r"[A-Za-z]"),
}
SENTENCE_BANK = {
    "English": ["The sun sets over the beautiful horizon.", "Hard work always pays off in the end."],
    "Tamil": ["இன்று நல்ல வானிலை உள்ளது.", "உழைப்பு எப்போதும் வெற்றியைத் தரும்."],
    "Malayalam": ["എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.", "കഠിനാധ്വാനം എപ്പോഴും ഫലം നൽകും."]
}

# Model cache
indicwhisper_pipeline = None
fallback_models = {}
WHISPER_JAX_AVAILABLE = False

# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
    return random.choice(SENTENCE_BANK[language_choice])

def is_script(text, lang_name):
    p = SCRIPT_PATTERNS.get(lang_name)
    return not p or bool(p.search(text or ""))

def transliterate_to_hk(text, lang_choice):
    if not INDIC_OK:
        return text
    mapping = {"Tamil": sanscript.TAMIL, "Malayalam": sanscript.MALAYALAM, "English": None}
    script = mapping.get(lang_choice)
    if script and is_script(text, lang_choice):
        try: return transliterate(text, script, sanscript.HK)
        except: return text
    return text

def preprocess_audio(audio_path, target_sr=16000):
    try:
        audio, sr = librosa.load(audio_path, sr=target_sr, mono=True)
        if audio is None or len(audio) == 0: return None, None
        audio = audio.astype(np.float32)
        m = np.max(np.abs(audio))
        if m > 0: audio /= m
        audio, _ = librosa.effects.trim(audio, top_db=20)
        if len(audio) < int(target_sr*0.1): return None, None
        return audio, target_sr
    except: return None, None

JIWER_TRANSFORM = jiwer.Compose([jiwer.ToLowerCase(), jiwer.RemovePunctuation(),
                                 jiwer.RemoveMultipleSpaces(), jiwer.Strip(),
                                 jiwer.ReduceToListOfListOfWords()])
def compute_wer(ref,hyp):
    try: return jiwer.wer(ref, hyp, truth_transform=JIWER_TRANSFORM, hypothesis_transform=JIWER_TRANSFORM)
    except: return 1.0
def compute_cer(ref,hyp):
    try: return jiwer.cer(ref, hyp)
    except: return 1.0

# ---------------- MODEL LOADERS ---------------- #
@GPU_DECORATOR
def load_indicwhisper():
    global indicwhisper_pipeline, WHISPER_JAX_AVAILABLE
    if indicwhisper_pipeline: return indicwhisper_pipeline
    try:
        from whisper_jax import FlaxWhisperPipeline; import jax.numpy as jnp
        indicwhisper_pipeline = FlaxWhisperPipeline(INDICWHISPER_MODEL, dtype=jnp.bfloat16, batch_size=1)
        WHISPER_JAX_AVAILABLE = True
        print("✅ JAX IndicWhisper loaded!")
        return indicwhisper_pipeline
    except Exception as e:
        print(f"⚠️ JAX unavailable: {e}"); WHISPER_JAX_AVAILABLE = False
    from transformers import pipeline
    indicwhisper_pipeline = pipeline("automatic-speech-recognition", model=INDICWHISPER_MODEL, device=DEVICE_INDEX)
    print("✅ Transformers IndicWhisper loaded!")
    return indicwhisper_pipeline

@GPU_DECORATOR
def load_specialized_model(language):
    if language in fallback_models: return fallback_models[language]
    from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
    name = SPECIALIZED_MODELS[language]
    proc = AutoProcessor.from_pretrained(name)
    model = AutoModelForSpeechSeq2Seq.from_pretrained(name, torch_dtype=DTYPE).to(DEVICE)
    fallback_models[language] = {"processor": proc, "model": model}
    return fallback_models[language]

# ---------------- TRANSCRIBE ---------------- #
@GPU_DECORATOR
def transcribe_with_primary_model(audio_path, language):
    try:
        pl = load_indicwhisper(); lang_code = LANG_CODES.get(language, "en")
        if WHISPER_JAX_AVAILABLE:
            res = pl(audio_path, task="transcribe", language=lang_code)
            if isinstance(res, dict): return res.get("text","").strip()
            return str(res).strip()
        if hasattr(pl, "model") and hasattr(pl, "tokenizer"):
            try:
                forced_ids = pl.tokenizer.get_decoder_prompt_ids(language=lang_code, task="transcribe")
                pl.model.config.forced_decoder_ids = forced_ids
            except: pass
        with amp_ctx():
            out = pl(audio_path)
        if isinstance(out, dict): return (out.get("text") or "").strip()
        return str(out).strip()
    except Exception as e:
        return f"Error: {str(e)}"

@GPU_DECORATOR
def transcribe_with_specialized_model(audio_path, language):
    try:
        comp = load_specialized_model(language)
        audio, sr = preprocess_audio(audio_path)
        if audio is None: return "Error: Audio too short"
        inputs = comp["processor"](audio, sampling_rate=sr, return_tensors="pt")
        feats = inputs.input_features.to(DEVICE)
        gen_kwargs = {"inputs": feats, "max_length": 200, "num_beams": 3}
        if language != "English":
            try:
                forced_ids = comp["processor"].tokenizer.get_decoder_prompt_ids(LANG_CODES[language], task="transcribe")
                gen_kwargs["forced_decoder_ids"] = forced_ids
            except: pass
        with torch.no_grad(), amp_ctx():
            ids = comp["model"].generate(**gen_kwargs)
        text = comp["processor"].batch_decode(ids, skip_special_tokens=True)[0]
        return text.strip()
    except Exception as e:
        return f"Error: {str(e)}"

@GPU_DECORATOR
def transcribe_audio(audio_path, language, use_specialized=False):
    if use_specialized:
        return transcribe_with_specialized_model(audio_path, language)
    else:
        return transcribe_with_primary_model(audio_path, language)

# ---------------- MAIN ---------------- #
@GPU_DECORATOR
def compare_pronunciation(audio, lang_choice, intended):
    if audio is None: return ("❌ Please record audio first.","","","","","","","")
    if not intended.strip(): return ("❌ Please generate a sentence first.","","","","","","","")
    ptext = transcribe_audio(audio, lang_choice, False)
    stext = transcribe_audio(audio, lang_choice, True)
    actual = ptext if not ptext.startswith("Error:") else stext
    if actual.startswith("Error:"): return (f"❌ {actual}","","","","","","","")
    wer_val, cer_val = compute_wer(intended, actual), compute_cer(intended, actual)
    score, feedback = get_score(wer_val, cer_val)
    return (f"✅ Done - {score}\n💬 {feedback}",
            ptext, stext,
            f"{wer_val:.3f} ({(1-wer_val)*100:.1f}%)",
            f"{cer_val:.3f} ({(1-cer_val)*100:.1f}%)",
            diff_html(intended, actual),
            char_html(intended, actual),
            f"🎯 Target: {intended}")

def get_score(wer, cer):
    c = (wer*0.7)+(cer*0.3)
    if c <= 0.1: return "🏆 Excellent!","Outstanding!"
    elif c <= 0.2: return "🎉 Very Good!","Minor improvements needed."
    elif c <= 0.4: return "👍 Good!","Keep practicing."
    elif c <= 0.6: return "📚 Needs Practice","Focus on clearer pronunciation."
    else: return "💪 Keep Trying!","Don't give up!"

def diff_html(ref,hyp): return highlight_differences(ref,hyp)
def char_html(ref,hyp): return char_level_highlight(ref,hyp)

# Diff functions
def highlight_differences(ref,hyp):
    ref_w, hyp_w = ref.split(), hyp.split()
    sm = difflib.SequenceMatcher(None, ref_w, hyp_w)
    out=[]
    for tag,i1,i2,j1,j2 in sm.get_opcodes():
        if tag=='equal': out += [f"<span style='color:green'>{w}</span>" for w in ref_w[i1:i2]]
        elif tag=='replace':
            out += [f"<span style='color:red'>{w}</span>" for w in ref_w[i1:i2]]
            out += [f"<span style='color:orange'>→{w}</span>" for w in hyp_w[j1:j2]]
        elif tag=='delete':
            out += [f"<span style='color:red'>{w}</span>" for w in ref_w[i1:i2]]
        elif tag=='insert':
            out += [f"<span style='color:orange'>+{w}</span>" for w in hyp_w[j1:j2]]
    return " ".join(out)

def char_level_highlight(ref,hyp):
    sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
    out=[]
    for tag,i1,i2,j1,j2 in sm.get_opcodes():
        if tag=='equal': out += [f"<span style='color:green'>{c}</span>" for c in ref[i1:i2]]
        elif tag in ('replace','delete'): out += [f"<span style='color:red'>{c}</span>" for c in ref[i1:i2]]
        elif tag=='insert': out += [f"<span style='color:orange'>{c}</span>" for c in hyp[j1:j2]]
    return "".join(out)

# ---------------- UI ---------------- #
def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# 🎙️ IndicWhisper Pronunciation Trainer")
        with gr.Row():
            lang = gr.Dropdown(choices=list(LANG_CODES.keys()), value="Tamil", label="Language")
            btn = gr.Button("🎲 Generate Sentence")
        intended = gr.Textbox(label="Practice Sentence", interactive=False, lines=3)
        audio = gr.Audio(sources=["microphone","upload"], type="filepath", label="Record")
        analyze = gr.Button("🔍 Analyze")
        status = gr.Textbox(label="Results", interactive=False, lines=4)
        pass1 = gr.Textbox(label="Primary (IndicWhisper)")
        pass2 = gr.Textbox(label="Specialized")
        wer = gr.Textbox(label="Word Accuracy")
        cer = gr.Textbox(label="Char Accuracy")
        diff = gr.HTML(label="Word Diff")
        chars = gr.HTML(label="Char Diff")
        target = gr.Textbox(label="Reference", visible=False)
        btn.click(get_random_sentence, [lang], [intended])
        analyze.click(compare_pronunciation, [audio, lang, intended],
                      [status, pass1, pass2, wer, cer, diff, chars, target])
        lang.change(get_random_sentence, [lang], [intended])
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)