File size: 8,177 Bytes
f4d67a4
7a61446
f4d67a4
48c3c18
 
2911bf0
7a61446
f4d67a4
2911bf0
48c3c18
7a61446
 
f4d67a4
2911bf0
f4d67a4
48c3c18
 
2911bf0
f4d67a4
 
48c3c18
5618139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c3c18
f4d67a4
2911bf0
 
 
 
 
 
 
 
7a61446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2911bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c3c18
 
 
2911bf0
 
 
48c3c18
f4d67a4
48c3c18
2911bf0
 
 
 
48c3c18
2911bf0
 
7a61446
 
 
2911bf0
7a61446
 
 
48c3c18
 
 
 
7a61446
 
2911bf0
 
7a61446
2911bf0
 
 
 
 
7a61446
 
 
48c3c18
 
2911bf0
7a61446
 
 
f4d67a4
 
7a61446
 
 
2911bf0
5618139
7a61446
 
2798eed
 
2911bf0
7a61446
2911bf0
 
f4d67a4
7a61446
 
 
 
 
 
 
48c3c18
 
2911bf0
7a61446
 
 
48c3c18
 
7a61446
 
 
 
 
 
 
 
 
48c3c18
7a61446
f4d67a4
2911bf0
7a61446
 
 
48c3c18
f4d67a4
2911bf0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
import random
from faster_whisper import WhisperModel
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import re
import jiwer  # pip install jiwer

# ---------------- CONFIG ---------------- #
MODEL_NAME = "large-v2"
DEVICE = "cpu"

LANG_CODES = {
    "English": "en",
    "Tamil": "ta",
    "Malayalam": "ml",
    "Hindi": "hi",
    "Sanskrit": "sa"
}

LANG_PRIMERS = {
    "English": (
        "The transcript should be in English only.",
        "Write only in English without translation. Example: This is an English sentence."
    ),
    "Tamil": (
        "நகல் தமிழ் எழுத்துக்களில் மட்டும் இருக்க வேண்டும்.",
        "தமிழ் எழுத்துக்களில் மட்டும் எழுதவும், மொழிபெயர்ப்பு செய்யக்கூடாது. உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."
    ),
    "Malayalam": (
        "ട്രാൻസ്ക്രിപ്റ്റ് മലയാള ലിപിയിൽ ആയിരിക്കണം.",
        "മലയാള ലിപിയിൽ മാത്രം എഴുതുക, വിവർത്തനം ചെയ്യരുത്. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്. എനിക്ക് മലയാളം അറിയാം."
    ),
    "Hindi": (
        "प्रतिलिपि केवल देवनागरी लिपि में होनी चाहिए।",
        "केवल देवनागरी लिपि में लिखें, अनुवाद न करें। उदाहरण: यह एक हिंदी वाक्य है।"
    ),
    "Sanskrit": (
        "प्रतिलिपि केवल देवनागरी लिपि में होनी चाहिए।",
        "केवल देवनागरी लिपि में लिखें, अनुवाद न करें। उदाहरण: अहं संस्कृतं जानामि।"
    )
}

SCRIPT_PATTERNS = {
    "Tamil": re.compile(r"[\u0B80-\u0BFF]"),
    "Malayalam": re.compile(r"[\u0D00-\u0D7F]"),
    "Hindi": re.compile(r"[\u0900-\u097F]"),
    "Sanskrit": re.compile(r"[\u0900-\u097F]"),
    "English": re.compile(r"[A-Za-z]")
}

# Example sentence bank for random generation
SENTENCE_BANK = {
    "English": [
        "The sun sets over the horizon.",
        "Learning languages is fun.",
        "I like to drink coffee in the morning."
    ],
    "Tamil": [
        "இன்று நல்ல வானிலை உள்ளது.",
        "நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
        "எனக்கு புத்தகம் படிக்க விருப்பம்."
    ],
    "Malayalam": [
        "എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
        "ഇന്ന് മഴപെയ്യുന്നു.",
        "ഞാൻ പുസ്തകം വായിക്കുന്നു."
    ],
    "Hindi": [
        "आज मौसम अच्छा है।",
        "मुझे हिंदी बोलना पसंद है।",
        "मैं किताब पढ़ रहा हूँ।"
    ],
    "Sanskrit": [
        "अहं ग्रन्थं पठामि।",
        "अद्य सूर्यः तेजस्वी अस्ति।",
        "मम नाम रामः।"
    ]
}

# ---------------- MODEL ---------------- #
print("Loading Whisper model...")
model = WhisperModel(MODEL_NAME, device=DEVICE)

# ---------------- HELPERS ---------------- #
def is_script(text, lang_name):
    pattern = SCRIPT_PATTERNS.get(lang_name)
    if not pattern:
        return True
    return bool(pattern.search(text))

def transliterate_to_hk(text, lang_choice):
    mapping = {
        "Tamil": sanscript.TAMIL,
        "Malayalam": sanscript.MALAYALAM,
        "Hindi": sanscript.DEVANAGARI,
        "Sanskrit": sanscript.DEVANAGARI,
        "English": None
    }
    if mapping[lang_choice]:
        return transliterate(text, mapping[lang_choice], sanscript.HK)
    else:
        return text

def transcribe_once(audio_path, lang_code, initial_prompt, beam_size, temperature, condition_on_previous_text):
    segments, info = model.transcribe(
        audio_path,
        language=lang_code,
        task="transcribe",
        initial_prompt=initial_prompt,
        beam_size=beam_size,
        temperature=temperature,
        condition_on_previous_text=condition_on_previous_text,
        word_timestamps=False
    )
    return "".join(s.text for s in segments).strip()

def get_random_sentence(language_choice):
    return random.choice(SENTENCE_BANK[language_choice])

# ---------------- MAIN PIPELINE ---------------- #
def compare_pronunciation(audio, language_choice, intended_sentence, pass2_beam, pass2_temp, pass2_condition):
    if audio is None or not intended_sentence.strip():
        return "No audio or intended sentence provided.", "", "", "", ""

    lang_code = LANG_CODES[language_choice]
    primer_weak, primer_strong = LANG_PRIMERS[language_choice]

    # Pass 1: Actual speech (no bias with intended sentence)
    actual_text = transcribe_once(
        audio_path=audio,
        lang_code=lang_code,
        initial_prompt=primer_weak,
        beam_size=8,
        temperature=0.4,
        condition_on_previous_text=True
    )

    # Pass 2: Target-biased output
    strict_prompt = f"{primer_strong}\nTarget: {intended_sentence}"
    corrected_text = transcribe_once(
        audio_path=audio,
        lang_code=lang_code,
        initial_prompt=strict_prompt,
        beam_size=pass2_beam,
        temperature=pass2_temp,
        condition_on_previous_text=pass2_condition
    )

    # Error Rates
    wer_val = jiwer.wer(intended_sentence, actual_text)
    cer_val = jiwer.cer(intended_sentence, actual_text)

    # Transliteration
    if is_script(actual_text, language_choice):
        hk_translit = transliterate_to_hk(actual_text, language_choice)
    else:
        hk_translit = f"[Script mismatch: expected {language_choice}]"

    return actual_text, corrected_text, hk_translit, f"{wer_val:.2f}", f"{cer_val:.2f}"

# ---------------- UI ---------------- #
with gr.Blocks() as demo:
    gr.Markdown("# 🎙️ Pronunciation Comparator with Random Sentence\nClick 'Generate Sentence', read it aloud, and compare actual vs intended output.")

    with gr.Row():
        lang_choice = gr.Dropdown(choices=list(LANG_CODES.keys()), value="Malayalam", label="Language")
        gen_btn = gr.Button("🎲 Generate Sentence")

    intended_display = gr.Textbox(label="Generated Sentence (Read this aloud)", interactive=False)

    with gr.Row():
        audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath")
        pass2_beam = gr.Slider(1, 10, value=5, step=1, label="Pass 2 Beam Size")
        pass2_temp = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Pass 2 Temperature")
        pass2_condition = gr.Checkbox(value=False, label="Pass 2: Condition on previous text")

    with gr.Row():
        pass1_out = gr.Textbox(label="Pass 1: What You Actually Said")
        pass2_out = gr.Textbox(label="Pass 2: Target-Biased Output")
        hk_out = gr.Textbox(label="Harvard-Kyoto Transliteration (Pass 1)")

    with gr.Row():
        wer_out = gr.Textbox(label="Word Error Rate vs Intended")
        cer_out = gr.Textbox(label="Character Error Rate vs Intended")

    gen_btn.click(fn=get_random_sentence, inputs=[lang_choice], outputs=[intended_display])

    submit_btn = gr.Button("Analyze Pronunciation")

    submit_btn.click(
        fn=compare_pronunciation,
        inputs=[audio_input, lang_choice, intended_display, pass2_beam, pass2_temp, pass2_condition],
        outputs=[pass1_out, pass2_out, hk_out, wer_out, cer_out]
    )

if __name__ == "__main__":
    demo.launch()