File size: 17,573 Bytes
25dc731
05566a8
 
 
 
25dc731
bb3f271
 
 
3940c6b
89f17cd
25dc731
 
3a8ecbf
bb3f271
 
 
 
 
 
25dc731
05566a8
 
 
bb3f271
05566a8
25dc731
bb3f271
 
 
 
 
 
 
25dc731
 
 
 
bb3f271
05566a8
 
 
25dc731
fa0e345
05566a8
bb3f271
05566a8
bb3f271
05566a8
fa0e345
 
 
05566a8
 
bb3f271
 
fa0e345
 
 
05566a8
 
bb3f271
 
fa0e345
25dc731
 
3940c6b
382a648
 
 
 
 
 
 
 
bb3f271
3940c6b
382a648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3940c6b
382a648
 
 
 
 
 
 
 
 
b7a8eef
bb3f271
25dc731
bb3f271
 
 
 
 
 
 
 
 
 
 
 
 
 
3940c6b
bb3f271
382a648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb3f271
 
 
 
2fbc223
 
 
 
 
bb3f271
 
2fbc223
 
 
bb3f271
2fbc223
 
 
bb3f271
2fbc223
 
bb3f271
2fbc223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb3f271
 
 
2fbc223
 
 
bb3f271
 
2fbc223
 
 
 
 
 
 
 
 
 
bb3f271
2fbc223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb3f271
 
3940c6b
bb3f271
 
 
382a648
bb3f271
382a648
 
bb3f271
382a648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05566a8
bb3f271
 
 
 
382a648
05566a8
bb3f271
 
 
05566a8
bb3f271
382a648
 
 
fa0e345
bb3f271
 
ca298ac
bb3f271
382a648
 
 
 
 
bb3f271
382a648
bb3f271
2fbc223
bb3f271
 
 
3a8ecbf
bb3f271
 
2fbc223
 
bb3f271
2fbc223
 
 
 
 
bb3f271
 
 
 
 
 
c2ad75f
bb3f271
c2ad75f
382a648
bb3f271
 
25dc731
 
bb3f271
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import spaces

# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Updated model configurations for each language
MODEL_CONFIGS = {
    "English": "openai/whisper-large-v2",
    "Tamil": "vasista22/whisper-tamil-large-v2", 
    "Malayalam": "thennal/whisper-medium-ml"
}

LANG_CODES = {
    "English": "en",
    "Tamil": "ta", 
    "Malayalam": "ml"
}

LANG_PRIMERS = {
    "English": ("The transcript should be in English only.",
                "Write only in English without translation. Example: This is an English sentence."),
    "Tamil": ("நகல் தமிழ் எழுத்துக்களில் மட்டும் இருக்க வேண்டும்.",
              "தமிழ் எழுத்துக்களில் மட்டும் எழுதவும், மொழிபெயர்ப்பு செய்யக்கூடாது. உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
    "Malayalam": ("ട്രാൻസ്ഖ്രിപ്റ്റ് മലയാള ലിപിയിൽ ആയിരിക്കണം.",
                  "മലയാള ലിപിയിൽ മാത്രം എഴുതുക, വിവർത്തനം ചെയ്യരുത്. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്. എനിക്ക് മലയാളം അറിയാം.")
}

SCRIPT_PATTERNS = {
    "Tamil": re.compile(r"[஀-௿]"),
    "Malayalam": re.compile(r"[ഀ-ൿ]"), 
    "English": re.compile(r"[A-Za-z]")
}

SENTENCE_BANK = {
    "English": [
        "The sun sets over the horizon.",
        "Learning languages is fun.",
        "I like to drink coffee in the morning.",
        "Technology helps us communicate better.",
        "Reading books expands our knowledge."
    ],
    "Tamil": [
        "இன்று நல்ல வானிலை உள்ளது.",
        "நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
        "எனக்கு புத்தகம் படிக்க விருப்பம்.",
        "தமிழ் மொழி மிகவும் அழகானது.",
        "நான் தினமும் பள்ளிக்கு செல்கிறேன்."
    ],
    "Malayalam": [
        "എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
        "ഇന്ന് മഴപെയ്യുന്നു.",
        "ഞാൻ പുസ്തകം വായിക്കുന്നു.",
        "കേരളം എന്റെ സ്വന്തം നാടാണ്.",
        "ഞാൻ മലയാളം പഠിക്കുന്നു."
    ]
}

# Global variables for models (will be loaded lazily)
current_model = None
current_processor = None
current_language = None

def clear_gpu_memory():
    """Clear GPU memory to prevent OOM errors"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

def load_model(language_choice):
    """Load model for specific language, unload previous if different"""
    global current_model, current_processor, current_language
    
    if current_language == language_choice and current_model is not None:
        return current_model, current_processor
    
    # Clear previous model if different language
    if current_model is not None:
        print(f"Unloading previous model for {current_language}")
        del current_model
        del current_processor
        clear_gpu_memory()
    
    # Load new model
    model_id = MODEL_CONFIGS[language_choice]
    print(f"Loading {language_choice} model: {model_id}")
    
    try:
        current_processor = WhisperProcessor.from_pretrained(model_id)
        current_model = WhisperForConditionalGeneration.from_pretrained(
            model_id,
            torch_dtype=torch.float16,  # Use half precision to save memory
            device_map="auto"
        )
        current_language = language_choice
        print(f"{language_choice} model loaded successfully!")
        return current_model, current_processor
        
    except Exception as e:
        print(f"Error loading model: {e}")
        # Fallback to CPU if GPU fails
        current_processor = WhisperProcessor.from_pretrained(model_id)
        current_model = WhisperForConditionalGeneration.from_pretrained(model_id)
        current_language = language_choice
        return current_model, current_processor

# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
    return random.choice(SENTENCE_BANK[language_choice])

def is_script(text, lang_name):
    pattern = SCRIPT_PATTERNS.get(lang_name)
    return bool(pattern.search(text)) if pattern else True

def transliterate_to_hk(text, lang_choice):
    mapping = {
        "Tamil": sanscript.TAMIL,
        "Malayalam": sanscript.MALAYALAM,
        "English": None
    }
    return transliterate(text, mapping[lang_choice], sanscript.HK) if mapping[lang_choice] else text

@spaces.GPU
def transcribe_once(audio_path, language_choice, initial_prompt, beam_size, temperature, condition_on_previous_text):
    try:
        # Load model if not already loaded
        model, processor = load_model(language_choice)
        lang_code = LANG_CODES[language_choice]
        
        # Load and process audio
        import librosa
        audio, sr = librosa.load(audio_path, sr=16000)
        
        # Process audio with the specific model's processor
        input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
        
        # Move to GPU if available
        if torch.cuda.is_available():
            input_features = input_features.to("cuda")
        
        # Generate forced decoder ids for the language
        forced_decoder_ids = processor.get_decoder_prompt_ids(language=lang_code, task="transcribe")
        
        # Generate transcription with memory-efficient settings
        with torch.no_grad():
            predicted_ids = model.generate(
                input_features,
                forced_decoder_ids=forced_decoder_ids,
                max_length=200,  # Reduced max length to save memory
                num_beams=min(beam_size, 4),  # Limit beam size for memory
                temperature=temperature if temperature > 0 else None,
                do_sample=temperature > 0,
                no_repeat_ngram_size=2,
                early_stopping=True
            )
        
        # Decode the transcription
        transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
        
        # Clear GPU cache after inference
        clear_gpu_memory()
        
        return transcription.strip()
        
    except Exception as e:
        print(f"Transcription error: {e}")
        clear_gpu_memory()
        return f"Error during transcription: {str(e)}"

def highlight_differences(ref, hyp):
    ref_words, hyp_words = ref.strip().split(), hyp.strip().split()
    sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
    
    # Create side-by-side comparison
    expected_html = []
    actual_html = []
    
    for tag, i1, i2, j1, j2 in sm.get_opcodes():
        if tag == 'equal':
            # Correct words - green background
            expected_html.extend([f"<span style='background-color:#d4edda; color:#155724; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
            actual_html.extend([f"<span style='background-color:#d4edda; color:#155724; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in hyp_words[j1:j2]])
        elif tag == 'replace':
            # Substituted words - red for expected, orange for actual
            expected_html.extend([f"<span style='background-color:#f8d7da; color:#721c24; padding:2px 4px; margin:1px; border-radius:3px; text-decoration:underline;'>{w}</span>" for w in ref_words[i1:i2]])
            actual_html.extend([f"<span style='background-color:#fff3cd; color:#856404; padding:2px 4px; margin:1px; border-radius:3px; font-weight:bold;'>{w}</span>" for w in hyp_words[j1:j2]])
        elif tag == 'delete':
            # Missing words - red with strikethrough
            expected_html.extend([f"<span style='background-color:#f8d7da; color:#721c24; padding:2px 4px; margin:1px; border-radius:3px; text-decoration:line-through;'>{w}</span>" for w in ref_words[i1:i2]])
        elif tag == 'insert':
            # Extra words - orange
            actual_html.extend([f"<span style='background-color:#fff3cd; color:#856404; padding:2px 4px; margin:1px; border-radius:3px; font-weight:bold;'>+{w}</span>" for w in hyp_words[j1:j2]])
    
    # Create the comparison HTML
    comparison_html = f"""
    <div style='font-family: monospace; line-height: 2;'>
        <div style='margin-bottom: 15px;'>
            <strong>📝 Expected:</strong><br>
            <div style='padding: 10px; background-color: #f8f9fa; border-radius: 5px; margin-top: 5px;'>
                {" ".join(expected_html)}
            </div>
        </div>
        <div style='margin-bottom: 15px;'>
            <strong>🎤 You said:</strong><br>
            <div style='padding: 10px; background-color: #f8f9fa; border-radius: 5px; margin-top: 5px;'>
                {" ".join(actual_html)}
            </div>
        </div>
        <div style='font-size: 12px; color: #6c757d; margin-top: 10px;'>
            <span style='background-color:#d4edda; padding:2px 4px; border-radius:3px;'>✓ Correct</span>
            <span style='background-color:#f8d7da; padding:2px 4px; border-radius:3px; margin-left:5px;'>✗ Expected</span>
            <span style='background-color:#fff3cd; padding:2px 4px; border-radius:3px; margin-left:5px;'>+ Extra/Wrong</span>
        </div>
    </div>
    """
    
    return comparison_html

def char_level_highlight(ref, hyp):
    sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
    expected_chars = []
    actual_chars = []
    
    for tag, i1, i2, j1, j2 in sm.get_opcodes():
        if tag == 'equal':
            # Correct characters - green background
            expected_chars.extend([f"<span style='background-color:#d4edda; color:#155724;'>{c}</span>" for c in ref[i1:i2]])
            actual_chars.extend([f"<span style='background-color:#d4edda; color:#155724;'>{c}</span>" for c in hyp[j1:j2]])
        elif tag == 'replace':
            # Different characters - red for expected, orange for actual
            expected_chars.extend([f"<span style='background-color:#f8d7da; color:#721c24; text-decoration:underline;'>{c}</span>" for c in ref[i1:i2]])
            actual_chars.extend([f"<span style='background-color:#fff3cd; color:#856404; font-weight:bold;'>{c}</span>" for c in hyp[j1:j2]])
        elif tag == 'delete':
            # Missing characters - red with strikethrough
            expected_chars.extend([f"<span style='background-color:#f8d7da; color:#721c24; text-decoration:line-through;'>{c}</span>" for c in ref[i1:i2]])
        elif tag == 'insert':
            # Extra characters - orange with + prefix
            actual_chars.extend([f"<span style='background-color:#fff3cd; color:#856404; font-weight:bold;'>{c}</span>" for c in hyp[j1:j2]])
    
    # Character-level comparison
    char_comparison_html = f"""
    <div style='font-family: monospace; line-height: 2; font-size: 16px;'>
        <div style='margin-bottom: 15px;'>
            <strong>📝 Expected (character-level):</strong><br>
            <div style='padding: 10px; background-color: #f8f9fa; border-radius: 5px; margin-top: 5px; word-break: break-all; letter-spacing: 1px;'>
                {"".join(expected_chars)}
            </div>
        </div>
        <div style='margin-bottom: 15px;'>
            <strong>🎤 You said (character-level):</strong><br>
            <div style='padding: 10px; background-color: #f8f9fa; border-radius: 5px; margin-top: 5px; word-break: break-all; letter-spacing: 1px;'>
                {"".join(actual_chars)}
            </div>
        </div>
        <div style='font-size: 12px; color: #6c757d; margin-top: 10px;'>
            Character-level analysis helps identify pronunciation issues within words
        </div>
    </div>
    """
    
    return char_comparison_html

# ---------------- MAIN ---------------- #
@spaces.GPU
def compare_pronunciation(audio, language_choice, intended_sentence,
                          pass1_beam, pass1_temp, pass1_condition):
    if audio is None or not intended_sentence.strip():
        return ("No audio or intended sentence.", "", "", "", "", "", "", "", "❌ Please provide audio and sentence")

    try:
        primer_weak, primer_strong = LANG_PRIMERS[language_choice]

        # Pass 1: raw transcription with user-configured decoding parameters
        status_msg = f"🔄 Transcribing with {language_choice} model..."
        actual_text = transcribe_once(audio, language_choice, primer_weak,
                                      pass1_beam, pass1_temp, pass1_condition)
        
        if actual_text.startswith("Error"):
            return (actual_text, "", "", "", "", "", "", "", "❌ Transcription failed")

        # Pass 2: strict transcription biased by intended sentence (fixed decoding params)
        strict_prompt = f"{primer_strong}\nTarget: {intended_sentence}"
        corrected_text = transcribe_once(audio, language_choice, strict_prompt,
                                         beam_size=3, temperature=0.0, condition_on_previous_text=False)

        # Compute WER and CER
        try:
            wer_val = jiwer.wer(intended_sentence, actual_text)
            cer_val = jiwer.cer(intended_sentence, actual_text)
        except:
            wer_val = 1.0
            cer_val = 1.0

        # Transliteration of Pass 1 output
        hk_translit = transliterate_to_hk(actual_text, language_choice) if is_script(actual_text, language_choice) else f"[Script mismatch: expected {language_choice}]"

        # Highlight word-level and character-level differences
        diff_html = highlight_differences(intended_sentence, actual_text)
        char_html = char_level_highlight(intended_sentence, actual_text)

        # Success status
        status_msg = f"✅ Analysis complete! WER: {wer_val:.2f}"

        return (actual_text, corrected_text, hk_translit, f"{wer_val:.2f}", f"{cer_val:.2f}",
                diff_html, char_html, intended_sentence, status_msg)
                
    except Exception as e:
        error_msg = f"❌ Error: {str(e)}"
        clear_gpu_memory()
        return ("Error occurred", "", "", "", "", "", "", "", error_msg)

# ---------------- UI ---------------- #
with gr.Blocks(title="Pronunciation Comparator") as demo:
    gr.Markdown("## 🎙 Pronunciation Comparator - English, Tamil & Malayalam")
    gr.Markdown("Practice pronunciation with specialized Whisper models for each language!")
    gr.Markdown("⚠️ **Note**: Models load on-demand to optimize memory usage. First use may take longer.")

    with gr.Row():
        lang_choice = gr.Dropdown(choices=list(LANG_CODES.keys()), value="Malayalam", label="Language")
        gen_btn = gr.Button("🎲 Generate Sentence")

    intended_display = gr.Textbox(label="Generated Sentence (Read aloud)", interactive=False)
    
    # Status indicator
    status_display = gr.Textbox(label="Status", interactive=False, value="🟢 Ready")

    with gr.Row():
        audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record your pronunciation")
        
    with gr.Column():
        gr.Markdown("### ⚙️ Transcription Parameters")
        with gr.Row():
            pass1_beam = gr.Slider(1, 4, value=2, step=1, label="Beam Size (lower = faster)")
            pass1_temp = gr.Slider(0.0, 0.8, value=0.2, step=0.1, label="Temperature")
        pass1_condition = gr.Checkbox(value=False, label="Condition on previous text")

    submit_btn = gr.Button("🔍 Analyze Pronunciation", variant="primary", size="lg")

    gr.Markdown("### 📊 Analysis Results")
    with gr.Row():
        pass1_out = gr.Textbox(label="Pass 1: What You Actually Said")
        pass2_out = gr.Textbox(label="Pass 2: Target-Biased Output")
        
    with gr.Row():
        hk_out = gr.Textbox(label="Harvard-Kyoto Transliteration (Pass 1)")
        wer_out = gr.Textbox(label="Word Error Rate (WER)")
        cer_out = gr.Textbox(label="Character Error Rate (CER)")

    gr.Markdown("### 🎯 Visual Comparison")
    gr.Markdown("Compare your pronunciation with the expected text to identify areas for improvement")
    
    diff_html_box = gr.HTML(label="Word-Level Comparison")
    char_html_box = gr.HTML(label="Character-Level Analysis")

    # Event handlers
    gen_btn.click(fn=get_random_sentence, inputs=[lang_choice], outputs=[intended_display])

    submit_btn.click(
        fn=compare_pronunciation,
        inputs=[audio_input, lang_choice, intended_display, pass1_beam, pass1_temp, pass1_condition],
        outputs=[
            pass1_out, pass2_out, hk_out, wer_out, cer_out,
            diff_html_box, char_html_box, intended_display, status_display
        ]
    )

if __name__ == "__main__":
    demo.launch()