Spaces:
Sleeping
Sleeping
File size: 10,856 Bytes
25dc731 05566a8 25dc731 bb3f271 3940c6b 89f17cd 25dc731 3a8ecbf bb3f271 25dc731 05566a8 bb3f271 05566a8 25dc731 bb3f271 25dc731 bb3f271 05566a8 25dc731 fa0e345 05566a8 bb3f271 05566a8 bb3f271 05566a8 fa0e345 05566a8 bb3f271 fa0e345 05566a8 bb3f271 fa0e345 25dc731 3940c6b bb3f271 3940c6b b7a8eef bb3f271 25dc731 bb3f271 3940c6b bb3f271 3940c6b bb3f271 3a8ecbf bb3f271 05566a8 bb3f271 05566a8 bb3f271 05566a8 bb3f271 3940c6b bb3f271 05566a8 bb3f271 05566a8 bb3f271 05566a8 bb3f271 fa0e345 bb3f271 ca298ac bb3f271 3a8ecbf bb3f271 c2ad75f bb3f271 c2ad75f bb3f271 25dc731 bb3f271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import spaces
# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Updated model configurations for each language
MODEL_CONFIGS = {
"English": "openai/whisper-large-v2",
"Tamil": "vasista22/whisper-tamil-large-v2",
"Malayalam": "thennal/whisper-medium-ml"
}
LANG_CODES = {
"English": "en",
"Tamil": "ta",
"Malayalam": "ml"
}
LANG_PRIMERS = {
"English": ("The transcript should be in English only.",
"Write only in English without translation. Example: This is an English sentence."),
"Tamil": ("நகல் தமிழ் எழுத்துக்களில் மட்டும் இருக்க வேண்டும்.",
"தமிழ் எழுத்துக்களில் மட்டும் எழுதவும், மொழிபெயர்ப்பு செய்யக்கூடாது. உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
"Malayalam": ("ട്രാൻസ്ഖ്രിപ്റ്റ് മലയാള ലിപിയിൽ ആയിരിക്കണം.",
"മലയാള ലിപിയിൽ മാത്രം എഴുതുക, വിവർത്തനം ചെയ്യരുത്. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്. എനിക്ക് മലയാളം അറിയാം.")
}
SCRIPT_PATTERNS = {
"Tamil": re.compile(r"[-]"),
"Malayalam": re.compile(r"[ഀ-ൿ]"),
"English": re.compile(r"[A-Za-z]")
}
SENTENCE_BANK = {
"English": [
"The sun sets over the horizon.",
"Learning languages is fun.",
"I like to drink coffee in the morning.",
"Technology helps us communicate better.",
"Reading books expands our knowledge."
],
"Tamil": [
"இன்று நல்ல வானிலை உள்ளது.",
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
"தமிழ் மொழி மிகவும் அழகானது.",
"நான் தினமும் பள்ளிக்கு செல்கிறேன்."
],
"Malayalam": [
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
"ഇന്ന് മഴപെയ്യുന്നു.",
"ഞാൻ പുസ്തകം വായിക്കുന്നു.",
"കേരളം എന്റെ സ്വന്തം നാടാണ്.",
"ഞാൻ മലയാളം പഠിക്കുന്നു."
]
}
# Global variables for models (will be loaded lazily)
whisper_models = {}
whisper_processors = {}
def load_model(language_choice):
"""Load model for specific language if not already loaded"""
if language_choice not in whisper_models:
model_id = MODEL_CONFIGS[language_choice]
print(f"Loading {language_choice} model: {model_id}")
whisper_models[language_choice] = WhisperForConditionalGeneration.from_pretrained(model_id).to(DEVICE)
whisper_processors[language_choice] = WhisperProcessor.from_pretrained(model_id)
print(f"{language_choice} model loaded successfully!")
# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
return random.choice(SENTENCE_BANK[language_choice])
def is_script(text, lang_name):
pattern = SCRIPT_PATTERNS.get(lang_name)
return bool(pattern.search(text)) if pattern else True
def transliterate_to_hk(text, lang_choice):
mapping = {
"Tamil": sanscript.TAMIL,
"Malayalam": sanscript.MALAYALAM,
"English": None
}
return transliterate(text, mapping[lang_choice], sanscript.HK) if mapping[lang_choice] else text
@spaces.GPU
def transcribe_once(audio_path, language_choice, initial_prompt, beam_size, temperature, condition_on_previous_text):
# Load model if not already loaded
load_model(language_choice)
# Get the appropriate model and processor for the language
model = whisper_models[language_choice]
processor = whisper_processors[language_choice]
lang_code = LANG_CODES[language_choice]
# Load and process audio
import librosa
audio, sr = librosa.load(audio_path, sr=16000)
# Process audio with the specific model's processor
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features.to(DEVICE)
# Generate forced decoder ids for the language
forced_decoder_ids = processor.get_decoder_prompt_ids(language=lang_code, task="transcribe")
# Generate transcription
with torch.no_grad():
predicted_ids = model.generate(
input_features,
forced_decoder_ids=forced_decoder_ids,
max_length=448,
num_beams=beam_size,
temperature=temperature if temperature > 0 else None,
do_sample=temperature > 0,
)
# Decode the transcription
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription.strip()
def highlight_differences(ref, hyp):
ref_words, hyp_words = ref.strip().split(), hyp.strip().split()
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
out_html = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out_html.extend([f"<span style='color:green'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'replace':
out_html.extend([f"<span style='color:red'>{w}</span>" for w in ref_words[i1:i2]])
out_html.extend([f"<span style='color:orange'>{w}</span>" for w in hyp_words[j1:j2]])
elif tag == 'delete':
out_html.extend([f"<span style='color:red;text-decoration:line-through'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'insert':
out_html.extend([f"<span style='color:orange'>{w}</span>" for w in hyp_words[j1:j2]])
return " ".join(out_html)
def char_level_highlight(ref, hyp):
sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
out = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out.extend([f"<span style='color:green'>{c}</span>" for c in ref[i1:i2]])
elif tag in ('replace', 'delete'):
out.extend([f"<span style='color:red;text-decoration:underline'>{c}</span>" for c in ref[i1:i2]])
elif tag == 'insert':
out.extend([f"<span style='color:orange'>{c}</span>" for c in hyp[j1:j2]])
return "".join(out)
# ---------------- MAIN ---------------- #
@spaces.GPU
def compare_pronunciation(audio, language_choice, intended_sentence,
pass1_beam, pass1_temp, pass1_condition):
if audio is None or not intended_sentence.strip():
return ("No audio or intended sentence.", "", "", "", "", "", "", "")
primer_weak, primer_strong = LANG_PRIMERS[language_choice]
# Pass 1: raw transcription with user-configured decoding parameters
actual_text = transcribe_once(audio, language_choice, primer_weak,
pass1_beam, pass1_temp, pass1_condition)
# Pass 2: strict transcription biased by intended sentence (fixed decoding params)
strict_prompt = f"{primer_strong}\nTarget: {intended_sentence}"
corrected_text = transcribe_once(audio, language_choice, strict_prompt,
beam_size=5, temperature=0.0, condition_on_previous_text=False)
# Compute WER and CER
wer_val = jiwer.wer(intended_sentence, actual_text)
cer_val = jiwer.cer(intended_sentence, actual_text)
# Transliteration of Pass 1 output
hk_translit = transliterate_to_hk(actual_text, language_choice) if is_script(actual_text, language_choice) else f"[Script mismatch: expected {language_choice}]"
# Highlight word-level and character-level differences
diff_html = highlight_differences(intended_sentence, actual_text)
char_html = char_level_highlight(intended_sentence, actual_text)
return (actual_text, corrected_text, hk_translit, f"{wer_val:.2f}", f"{cer_val:.2f}",
diff_html, char_html, intended_sentence)
# ---------------- UI ---------------- #
with gr.Blocks(title="Pronunciation Comparator") as demo:
gr.Markdown("## 🎙 Pronunciation Comparator - English, Tamil & Malayalam")
gr.Markdown("Practice pronunciation with specialized Whisper models for each language!")
with gr.Row():
lang_choice = gr.Dropdown(choices=list(LANG_CODES.keys()), value="Malayalam", label="Language")
gen_btn = gr.Button("🎲 Generate Sentence")
intended_display = gr.Textbox(label="Generated Sentence (Read aloud)", interactive=False)
with gr.Row():
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record your pronunciation")
with gr.Column():
gr.Markdown("### Transcription Parameters")
pass1_beam = gr.Slider(1, 10, value=8, step=1, label="Pass 1 Beam Size")
pass1_temp = gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="Pass 1 Temperature")
pass1_condition = gr.Checkbox(value=True, label="Pass 1: Condition on previous text")
submit_btn = gr.Button("🔍 Analyze Pronunciation", variant="primary")
with gr.Row():
pass1_out = gr.Textbox(label="Pass 1: What You Actually Said")
pass2_out = gr.Textbox(label="Pass 2: Target-Biased Output")
with gr.Row():
hk_out = gr.Textbox(label="Harvard-Kyoto Transliteration (Pass 1)")
wer_out = gr.Textbox(label="Word Error Rate")
cer_out = gr.Textbox(label="Character Error Rate")
gr.Markdown("### Visual Feedback")
diff_html_box = gr.HTML(label="Word Differences Highlighted")
char_html_box = gr.HTML(label="Character-Level Highlighting (mispronounced = red underline)")
# Event handlers
gen_btn.click(fn=get_random_sentence, inputs=[lang_choice], outputs=[intended_display])
submit_btn.click(
fn=compare_pronunciation,
inputs=[audio_input, lang_choice, intended_display, pass1_beam, pass1_temp, pass1_condition],
outputs=[
pass1_out, pass2_out, hk_out, wer_out, cer_out,
diff_html_box, char_html_box, intended_display
]
)
if __name__ == "__main__":
demo.launch() |