File size: 20,336 Bytes
25dc731
05566a8
 
 
25dc731
be6893d
 
 
 
 
 
eecaaa5
 
89f17cd
25dc731
 
3a8ecbf
bb3f271
 
 
 
 
25dc731
05566a8
 
 
bb3f271
05566a8
25dc731
 
fa0e345
05566a8
bb3f271
05566a8
bb3f271
be6893d
fa0e345
 
 
05566a8
 
bb3f271
be6893d
fa0e345
 
 
05566a8
 
bb3f271
be6893d
fa0e345
25dc731
 
be6893d
 
 
35b317d
be6893d
 
 
35b317d
be6893d
 
35b317d
be6893d
 
 
 
eecaaa5
 
 
 
 
 
be6893d
eecaaa5
 
 
be6893d
eecaaa5
 
 
be6893d
eecaaa5
 
 
 
 
be6893d
eecaaa5
 
 
be6893d
 
eecaaa5
be6893d
eecaaa5
 
 
be6893d
eecaaa5
 
 
 
 
b7a8eef
be6893d
 
 
eecaaa5
be6893d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eecaaa5
be6893d
 
9c2f50b
eecaaa5
 
9c2f50b
be6893d
9c2f50b
 
 
 
 
 
 
 
be6893d
9c2f50b
 
 
 
 
 
 
 
be6893d
 
 
 
 
 
 
 
 
 
 
9c2f50b
be6893d
 
 
9c2f50b
 
be6893d
9c2f50b
 
 
be6893d
 
 
 
 
 
9c2f50b
 
 
 
 
 
 
 
 
 
 
 
 
be6893d
eecaaa5
be6893d
9c2f50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eecaaa5
9c2f50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eecaaa5
be6893d
eecaaa5
 
be6893d
 
 
e8f391d
 
be6893d
e8f391d
 
 
be6893d
e8f391d
be6893d
e8f391d
be6893d
e8f391d
fbcc894
 
 
 
 
 
be6893d
 
fbcc894
be6893d
fbcc894
 
 
be6893d
 
fbcc894
e8f391d
 
 
bb3f271
be6893d
39de6da
751fdfd
 
 
 
 
 
 
 
be6893d
751fdfd
be6893d
 
 
eecaaa5
751fdfd
 
 
 
be6893d
751fdfd
 
eecaaa5
be6893d
35b317d
be6893d
eecaaa5
751fdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eecaaa5
751fdfd
 
 
 
 
 
 
 
 
 
 
 
 
eecaaa5
be6893d
 
eecaaa5
be6893d
 
 
751fdfd
e8f391d
eecaaa5
be6893d
 
 
35b317d
be6893d
35b317d
be6893d
 
eecaaa5
 
751fdfd
eecaaa5
be6893d
eecaaa5
 
 
be6893d
 
eecaaa5
751fdfd
 
eecaaa5
751fdfd
eecaaa5
 
751fdfd
be6893d
 
05566a8
be6893d
 
 
 
 
 
 
59775e3
 
bb3f271
be6893d
 
eecaaa5
be6893d
32688f6
eecaaa5
be6893d
32688f6
be6893d
751fdfd
35b317d
eecaaa5
 
35b317d
eecaaa5
751fdfd
eecaaa5
05566a8
bb3f271
be6893d
 
 
 
 
 
eecaaa5
 
be6893d
eecaaa5
35b317d
 
d031a29
fa0e345
be6893d
 
 
 
 
eecaaa5
 
bb3f271
 
be6893d
 
 
 
751fdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb3f271
59775e3
934774c
be6893d
 
934774c
 
 
 
be6893d
 
751fdfd
934774c
25dc731
 
bb3f271
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import gradio as gr
import random
import difflib
import jiwer
import torch
from transformers import (
    WhisperForConditionalGeneration, 
    WhisperProcessor,
    AutoModelForCausalLM, 
    AutoTokenizer
)
import spaces
import gc

# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

MODEL_CONFIGS = {
    "English": "openai/whisper-large-v2",
    "Tamil": "vasista22/whisper-tamil-large-v2", 
    "Malayalam": "thennal/whisper-medium-ml"
}

LANG_CODES = {
    "English": "en",
    "Tamil": "ta", 
    "Malayalam": "ml"
}

SENTENCE_BANK = {
    "English": [
        "The sun sets over the horizon.",
        "Learning languages is fun.",
        "I like to drink coffee in the morning.",
        "Technology helps us communicate better.",
        "Reading books expands our knowledge."
    ],
    "Tamil": [
        "இன்று நல்ல வானிலை உள்ளது.",
        "நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
        "எனக்கு புத்தகம் படிக்க விருப்பம்.",
        "தமிழ் மொழி மிகவும் அழகானது.",
        "அன்னை தமிழ் எங்கள் தாய்மொழி."
    ],
    "Malayalam": [
        "എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
        "ഇന്ന് മഴപെയ്യുന്നു.",
        "ഞാൻ പുസ്തകം വായിക്കുന്നു.",
        "കേരളം എന്റെ സ്വന്തം നാടാണ്.",
        "സംഗീതം ജീവിതത്തിന്റെ ഭാഗമാണ്."
    ]
}

# ---------------- MODELS ---------------- #
current_whisper_model = {"language": None, "model": None, "processor": None}
qwen_model = {"model": None, "tokenizer": None}

def load_whisper_model(language_choice):
    """Load Whisper model for the selected language"""
    global current_whisper_model
    
    if current_whisper_model["language"] == language_choice and current_whisper_model["model"] is not None:
        return current_whisper_model["model"], current_whisper_model["processor"]
    
    # Clear previous model
    if current_whisper_model["model"] is not None:
        del current_whisper_model["model"]
        del current_whisper_model["processor"]
        gc.collect()
        if DEVICE == "cuda":
            torch.cuda.empty_cache()
    
    # Load new model
    model_id = MODEL_CONFIGS[language_choice]
    print(f"Loading Whisper model: {model_id}")
    
    try:
        model = WhisperForConditionalGeneration.from_pretrained(
            model_id, torch_dtype=torch.float32
        ).to(DEVICE)
        processor = WhisperProcessor.from_pretrained(model_id)
        
        current_whisper_model = {
            "language": language_choice,
            "model": model,
            "processor": processor
        }
        
        print(f"✓ Whisper model loaded successfully")
        return model, processor
        
    except Exception as e:
        print(f"✗ Error loading Whisper model: {e}")
        # Fallback to base model
        model = WhisperForConditionalGeneration.from_pretrained(
            "openai/whisper-base", torch_dtype=torch.float32
        ).to(DEVICE)
        processor = WhisperProcessor.from_pretrained("openai/whisper-base")
        
        current_whisper_model = {
            "language": language_choice,
            "model": model,
            "processor": processor
        }
        return model, processor

def load_qwen_model():
    """Load Qwen2.5-1.5B-Instruct for transliteration"""
    global qwen_model
    
    if qwen_model["model"] is not None:
        return qwen_model["model"], qwen_model["tokenizer"]
    
    try:
        model_name = "Qwen/Qwen2.5-1.5B-Instruct"
        print(f"Loading Qwen model: {model_name}")
        
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            trust_remote_code=True,
            torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
            device_map="auto" if DEVICE == "cuda" else None
        )
        
        if DEVICE == "cpu":
            model = model.to(DEVICE)
        
        model.eval()
        
        qwen_model = {"model": model, "tokenizer": tokenizer}
        print(f"✓ Qwen model loaded successfully")
        return model, tokenizer
        
    except Exception as e:
        print(f"✗ Failed to load Qwen model: {e}")
        return None, None

# ---------------- TRANSLITERATION ---------------- #

def transliterate_with_qwen(text, source_lang):
    """Use Qwen for natural transliteration"""
    if source_lang == "English" or not text.strip():
        return text
    
    model, tokenizer = load_qwen_model()
    if model is None or tokenizer is None:
        return get_simple_transliteration(text, source_lang)  # Simple fallback
    
    try:
        # Create better prompts with examples
        if source_lang == "Tamil":
            system_prompt = "You are a Tamil transliteration expert. Convert Tamil script to English letters (Thanglish) like how Tamil people type on phones."
            user_prompt = f"""Convert this Tamil text to Thanglish using English letters:

Tamil: நான் தமிழ் படிக்கிறேன்
Thanglish: naan tamil padikkiren

Tamil: {text}
Thanglish:"""
        else:  # Malayalam
            system_prompt = "You are a Malayalam transliteration expert. Convert Malayalam script to English letters (Manglish) like how Malayalam people type on phones."
            user_prompt = f"""Convert this Malayalam text to Manglish using English letters:

Malayalam: ഞാൻ മലയാളം പഠിക്കുന്നു
Manglish: njan malayalam padikkunnu

Malayalam: {text}
Manglish:"""
        
        # Format for Qwen
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ]
        
        prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
        inputs = inputs.to(DEVICE)
        
        # Generate with better parameters
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=100,
                temperature=0.3,
                do_sample=True,
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id,
                repetition_penalty=1.2
            )
        
        # Extract response
        full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        response = full_response[len(prompt):].strip()
        
        # Clean response - remove any remaining script characters
        import re
        response = response.split('\n')[0].strip()  # Take first line
        response = re.sub(r'[^\x00-\x7F]+', '', response)  # Remove non-ASCII (script chars)
        response = response.strip()
        
        # Validate response (should not contain original script)
        if source_lang == "Malayalam" and any(char in response for char in "അആഇഈഉഊഋഎഏഐഒഓഔകഖഗഘങചഛജഝഞടഠഡഢണതഥദധനപഫബഭമയരലവശഷസഹളഴറ"):
            return get_simple_transliteration(text, source_lang)
        elif source_lang == "Tamil" and any(char in response for char in "அஆஇஈஉஊஎஏஐஒஓஔகஙசஞடணதநபமயரலவழளற"):
            return get_simple_transliteration(text, source_lang)
        
        return response if response else get_simple_transliteration(text, source_lang)
        
    except Exception as e:
        print(f"Qwen transliteration error: {e}")
        return get_simple_transliteration(text, source_lang)

def get_simple_transliteration(text, lang_choice):
    """Simple transliteration if Qwen fails"""
    # Basic word-level mappings for common words
    if lang_choice == "Malayalam":
        word_map = {
            "കേരളം": "kerala",
            "എന്റെ": "ente", 
            "സ്വന്തം": "swantham",
            "നാടാണ്": "naadaan",
            "എനിക്ക്": "enikku",
            "മലയാളം": "malayalam",
            "വളരെ": "valare",
            "ഇഷ്ടമാണ്": "ishtamaan",
            "ഞാൻ": "njan",
            "പുസ്തകം": "pusthakam",
            "വായിക്കുന്നു": "vaayikkunnu"
        }
    elif lang_choice == "Tamil":
        word_map = {
            "அன்னை": "annai",
            "தமிழ்": "tamil", 
            "எங்கள்": "engal",
            "தாய்மொழி": "thaaimozhi",
            "நான்": "naan",
            "இன்று": "indru",
            "நல்ல": "nalla",
            "வானிலை": "vaanilai"
        }
    else:
        return text
    
    # Simple word replacement
    words = text.split()
    result_words = []
    for word in words:
        # Remove punctuation for lookup
        clean_word = word.rstrip('.,!?')
        punct = word[len(clean_word):]
        
        if clean_word in word_map:
            result_words.append(word_map[clean_word] + punct)
        else:
            # For unknown words, try basic phonetic conversion
            result_words.append(basic_phonetic_convert(clean_word, lang_choice) + punct)
    
    return ' '.join(result_words)

def basic_phonetic_convert(word, lang_choice):
    """Very basic phonetic conversion for unknown words"""
    # This is a minimal fallback - just remove complex characters
    import re
    if lang_choice == "Malayalam":
        # Replace some common Malayalam characters with approximate sounds
        result = word.replace('ം', 'm').replace('ൺ', 'n').replace('ൻ', 'n')
        result = re.sub(r'[^\x00-\x7F]+', '', result)  # Remove remaining script chars
        return result if result else "unknown"
    elif lang_choice == "Tamil":
        result = re.sub(r'[^\x00-\x7F]+', '', word)  # Remove script chars
        return result if result else "unknown"
    return word

# ---------------- SPEECH RECOGNITION ---------------- #

@spaces.GPU
def transcribe_audio(audio_path, language_choice):
    """Transcribe audio using Whisper"""
    model, processor = load_whisper_model(language_choice)
    lang_code = LANG_CODES[language_choice]
    
    # Load audio
    import librosa
    audio, sr = librosa.load(audio_path, sr=16000)
    
    # Process audio
    input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
    input_features = input_features.to(DEVICE, dtype=next(model.parameters()).dtype)
    
    # Generate transcription
    with torch.no_grad():
        try:
            forced_decoder_ids = processor.get_decoder_prompt_ids(language=lang_code, task="transcribe")
            predicted_ids = model.generate(
                input_features,
                forced_decoder_ids=forced_decoder_ids,
                max_length=448,
                num_beams=5,
                temperature=0.0
            )
        except:
            predicted_ids = model.generate(
                input_features,
                max_length=448,
                num_beams=5,
                temperature=0.0
            )
    
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
    return transcription.strip()

# ---------------- FEEDBACK SYSTEM ---------------- #

def normalize_text_for_comparison(text):
    """Remove punctuation and normalize text for fair comparison"""
    import string
    # Remove punctuation and extra spaces
    text = text.translate(str.maketrans('', '', string.punctuation))
    text = ' '.join(text.split())  # Normalize spaces
    return text.lower()

def create_feedback(intended, actual, lang_choice):
    """Create simple feedback comparison with tables"""
    # Get transliterations
    intended_roman = transliterate_with_qwen(intended, lang_choice)
    actual_roman = transliterate_with_qwen(actual, lang_choice)
    
    # Normalize for comparison (remove punctuation)
    intended_normalized = normalize_text_for_comparison(intended)
    actual_normalized = normalize_text_for_comparison(actual)
    
    # Calculate accuracy
    intended_words = intended_normalized.split()
    actual_words = actual_normalized.split()
    
    # Simple word-level accuracy
    sm = difflib.SequenceMatcher(None, intended_words, actual_words)
    accuracy = sm.ratio() * 100
    
    # Create comparison data for table
    comparison_data = [
        ["Target Text", intended],
        ["Target (Romanized)", intended_roman],
        ["Your Speech", actual],
        ["Your Speech (Romanized)", actual_roman],
        ["Accuracy Score", f"{accuracy:.1f}%"]
    ]
    
    # Find incorrect words for pronunciation table
    wrong_pronunciations = []
    
    # Get word-level differences
    for tag, i1, i2, j1, j2 in sm.get_opcodes():
        if tag == 'replace':
            # Words that were pronounced differently
            for idx in range(max(i2-i1, j2-j1)):
                expected_word = intended_words[i1 + idx] if (i1 + idx) < i2 else ""
                actual_word = actual_words[j1 + idx] if (j1 + idx) < j2 else ""
                
                if expected_word and actual_word and expected_word != actual_word:
                    # Get romanized versions
                    expected_roman = transliterate_with_qwen(expected_word, lang_choice)
                    actual_roman = transliterate_with_qwen(actual_word, lang_choice)
                    
                    wrong_pronunciations.append([
                        expected_word,
                        expected_roman,
                        actual_word, 
                        actual_roman
                    ])
        elif tag == 'delete':
            # Missing words
            for idx in range(i2-i1):
                expected_word = intended_words[i1 + idx]
                expected_roman = transliterate_with_qwen(expected_word, lang_choice)
                wrong_pronunciations.append([
                    expected_word,
                    expected_roman,
                    "(Not spoken)",
                    ""
                ])
        elif tag == 'insert':
            # Extra words
            for idx in range(j2-j1):
                actual_word = actual_words[j1 + idx]
                actual_roman = transliterate_with_qwen(actual_word, lang_choice)
                wrong_pronunciations.append([
                    "(Not expected)",
                    "",
                    actual_word,
                    actual_roman
                ])
    
    # Create motivational message
    if accuracy >= 95:
        message = "🎉 Outstanding! Perfect pronunciation!"
    elif accuracy >= 85:
        message = "🌟 Excellent! Very natural sounding!"
    elif accuracy >= 70:
        message = "👍 Good job! Your pronunciation is improving!"
    elif accuracy >= 50:
        message = "📚 Getting there! Focus on the highlighted sounds!"
    else:
        message = "💪 Keep practicing! Every attempt makes you better!"
    
    return comparison_data, wrong_pronunciations, message, accuracy

# ---------------- MAIN FUNCTION ---------------- #

@spaces.GPU
def analyze_pronunciation(audio, lang_choice, intended_text):
    """Main function to analyze pronunciation"""
    if audio is None or not intended_text.strip():
        return "⚠️ Please record audio and generate a sentence first.", "", "", [], [], ""

    try:
        # Extract original sentence (remove romanization if present)
        if "🔤" in intended_text:
            intended_sentence = intended_text.split("🔤")[0].strip()
        else:
            intended_sentence = intended_text.strip()

        # Transcribe audio
        actual_text = transcribe_audio(audio, lang_choice)
        
        if not actual_text.strip():
            return "⚠️ No speech detected. Please try recording again.", "", "", [], [], ""

        # Calculate metrics
        wer_val = jiwer.wer(intended_sentence, actual_text)
        cer_val = jiwer.cer(intended_sentence, actual_text)

        # Get romanizations
        actual_roman = transliterate_with_qwen(actual_text, lang_choice)

        # Create feedback tables
        comparison_data, wrong_pronunciations, message, accuracy = create_feedback(intended_sentence, actual_text, lang_choice)

        return actual_text, actual_roman, f"{wer_val:.1%}", comparison_data, wrong_pronunciations, message
    
    except Exception as e:
        return f"❌ Error: {str(e)}", "", "", [], [], ""

# ---------------- HELPERS ---------------- #

def get_random_sentence_with_transliteration(language_choice):
    """Get a random sentence with its transliteration"""
    sentence = random.choice(SENTENCE_BANK[language_choice])
    if language_choice in ["Tamil", "Malayalam"]:
        transliteration = transliterate_with_qwen(sentence, language_choice)
        combined = f"{sentence}\n\n🔤 {transliteration}"
        return combined
    return sentence

# ---------------- UI ---------------- #

with gr.Blocks(title="AI Pronunciation Coach", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🎙️ AI Pronunciation Coach
    ### Practice English, Tamil & Malayalam with AI feedback powered by Gemma-3-4B-IT
    
    **Features:**
    - ✨ **Smart Transliteration**: Natural Thanglish/Manglish using Gemma-3-4B-IT (proven best)
    - 🎯 **Accurate Recognition**: Language-specific Whisper models
    - 📊 **Smart Analysis**: Punctuation-aware comparison with correction tables
    
    **How to use:**
    1. Select your language
    2. Generate a practice sentence  
    3. Record yourself reading it aloud
    4. Get instant feedback with detailed analysis!
    """)

    with gr.Row():
        lang_choice = gr.Dropdown(
            choices=list(LANG_CODES.keys()), 
            value="Malayalam", 
            label="🌍 Choose Language"
        )
        gen_btn = gr.Button("🎲 Generate Practice Sentence", variant="primary")

    intended_display = gr.Textbox(
        label="📝 Practice Sentence", 
        interactive=False,
        placeholder="Click 'Generate Practice Sentence' to get started...",
        lines=3
    )

    audio_input = gr.Audio(
        sources=["microphone"], 
        type="filepath", 
        label="🎤 Record Your Pronunciation"
    )

    analyze_btn = gr.Button("🔍 Analyze My Pronunciation", variant="primary", size="lg")

    with gr.Row():
        actual_out = gr.Textbox(label="🗣️ What You Said", interactive=False)
        actual_roman_out = gr.Textbox(label="🔤 Your Pronunciation (Romanized)", interactive=False)
        wer_out = gr.Textbox(label="📊 Word Error Rate", interactive=False)

    # Analysis tables
    gr.Markdown("### 📊 Analysis Results")
    
    with gr.Row():
        with gr.Column():
            comparison_table = gr.Dataframe(
                headers=["Metric", "Value"],
                label="📋 Overall Comparison",
                interactive=False
            )
        with gr.Column():
            pronunciation_table = gr.Dataframe(
                headers=["Expected Word", "Expected (Romanized)", "You Said", "You Said (Romanized)"],
                label="❌ Pronunciation Corrections Needed",
                interactive=False
            )
    
    feedback_message = gr.Textbox(label="💬 Feedback", interactive=False)

    # Event handlers
    gen_btn.click(
        fn=get_random_sentence_with_transliteration,
        inputs=[lang_choice],
        outputs=[intended_display]
    )

    analyze_btn.click(
        fn=analyze_pronunciation,
        inputs=[audio_input, lang_choice, intended_display],
        outputs=[actual_out, actual_roman_out, wer_out, comparison_table, pronunciation_table, feedback_message]
    )

if __name__ == "__main__":
    demo.launch()