sudhanm's picture
Update app.py
382a648 verified
raw
history blame
17.6 kB
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import spaces
# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Updated model configurations for each language
MODEL_CONFIGS = {
"English": "openai/whisper-large-v2",
"Tamil": "vasista22/whisper-tamil-large-v2",
"Malayalam": "thennal/whisper-medium-ml"
}
LANG_CODES = {
"English": "en",
"Tamil": "ta",
"Malayalam": "ml"
}
LANG_PRIMERS = {
"English": ("The transcript should be in English only.",
"Write only in English without translation. Example: This is an English sentence."),
"Tamil": ("நகல் தமிழ் எழுத்துக்களில் மட்டும் இருக்க வேண்டும்.",
"தமிழ் எழுத்துக்களில் மட்டும் எழுதவும், மொழிபெயர்ப்பு செய்யக்கூடாது. உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
"Malayalam": ("ട്രാൻസ്ഖ്രിപ്റ്റ് മലയാള ലിപിയിൽ ആയിരിക്കണം.",
"മലയാള ലിപിയിൽ മാത്രം എഴുതുക, വിവർത്തനം ചെയ്യരുത്. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്. എനിക്ക് മലയാളം അറിയാം.")
}
SCRIPT_PATTERNS = {
"Tamil": re.compile(r"[஀-௿]"),
"Malayalam": re.compile(r"[ഀ-ൿ]"),
"English": re.compile(r"[A-Za-z]")
}
SENTENCE_BANK = {
"English": [
"The sun sets over the horizon.",
"Learning languages is fun.",
"I like to drink coffee in the morning.",
"Technology helps us communicate better.",
"Reading books expands our knowledge."
],
"Tamil": [
"இன்று நல்ல வானிலை உள்ளது.",
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
"தமிழ் மொழி மிகவும் அழகானது.",
"நான் தினமும் பள்ளிக்கு செல்கிறேன்."
],
"Malayalam": [
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
"ഇന്ന് മഴപെയ്യുന്നു.",
"ഞാൻ പുസ്തകം വായിക്കുന്നു.",
"കേരളം എന്റെ സ്വന്തം നാടാണ്.",
"ഞാൻ മലയാളം പഠിക്കുന്നു."
]
}
# Global variables for models (will be loaded lazily)
current_model = None
current_processor = None
current_language = None
def clear_gpu_memory():
"""Clear GPU memory to prevent OOM errors"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
def load_model(language_choice):
"""Load model for specific language, unload previous if different"""
global current_model, current_processor, current_language
if current_language == language_choice and current_model is not None:
return current_model, current_processor
# Clear previous model if different language
if current_model is not None:
print(f"Unloading previous model for {current_language}")
del current_model
del current_processor
clear_gpu_memory()
# Load new model
model_id = MODEL_CONFIGS[language_choice]
print(f"Loading {language_choice} model: {model_id}")
try:
current_processor = WhisperProcessor.from_pretrained(model_id)
current_model = WhisperForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16, # Use half precision to save memory
device_map="auto"
)
current_language = language_choice
print(f"{language_choice} model loaded successfully!")
return current_model, current_processor
except Exception as e:
print(f"Error loading model: {e}")
# Fallback to CPU if GPU fails
current_processor = WhisperProcessor.from_pretrained(model_id)
current_model = WhisperForConditionalGeneration.from_pretrained(model_id)
current_language = language_choice
return current_model, current_processor
# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
return random.choice(SENTENCE_BANK[language_choice])
def is_script(text, lang_name):
pattern = SCRIPT_PATTERNS.get(lang_name)
return bool(pattern.search(text)) if pattern else True
def transliterate_to_hk(text, lang_choice):
mapping = {
"Tamil": sanscript.TAMIL,
"Malayalam": sanscript.MALAYALAM,
"English": None
}
return transliterate(text, mapping[lang_choice], sanscript.HK) if mapping[lang_choice] else text
@spaces.GPU
def transcribe_once(audio_path, language_choice, initial_prompt, beam_size, temperature, condition_on_previous_text):
try:
# Load model if not already loaded
model, processor = load_model(language_choice)
lang_code = LANG_CODES[language_choice]
# Load and process audio
import librosa
audio, sr = librosa.load(audio_path, sr=16000)
# Process audio with the specific model's processor
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
# Move to GPU if available
if torch.cuda.is_available():
input_features = input_features.to("cuda")
# Generate forced decoder ids for the language
forced_decoder_ids = processor.get_decoder_prompt_ids(language=lang_code, task="transcribe")
# Generate transcription with memory-efficient settings
with torch.no_grad():
predicted_ids = model.generate(
input_features,
forced_decoder_ids=forced_decoder_ids,
max_length=200, # Reduced max length to save memory
num_beams=min(beam_size, 4), # Limit beam size for memory
temperature=temperature if temperature > 0 else None,
do_sample=temperature > 0,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decode the transcription
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# Clear GPU cache after inference
clear_gpu_memory()
return transcription.strip()
except Exception as e:
print(f"Transcription error: {e}")
clear_gpu_memory()
return f"Error during transcription: {str(e)}"
def highlight_differences(ref, hyp):
ref_words, hyp_words = ref.strip().split(), hyp.strip().split()
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
# Create side-by-side comparison
expected_html = []
actual_html = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
# Correct words - green background
expected_html.extend([f"<span style='background-color:#d4edda; color:#155724; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
actual_html.extend([f"<span style='background-color:#d4edda; color:#155724; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in hyp_words[j1:j2]])
elif tag == 'replace':
# Substituted words - red for expected, orange for actual
expected_html.extend([f"<span style='background-color:#f8d7da; color:#721c24; padding:2px 4px; margin:1px; border-radius:3px; text-decoration:underline;'>{w}</span>" for w in ref_words[i1:i2]])
actual_html.extend([f"<span style='background-color:#fff3cd; color:#856404; padding:2px 4px; margin:1px; border-radius:3px; font-weight:bold;'>{w}</span>" for w in hyp_words[j1:j2]])
elif tag == 'delete':
# Missing words - red with strikethrough
expected_html.extend([f"<span style='background-color:#f8d7da; color:#721c24; padding:2px 4px; margin:1px; border-radius:3px; text-decoration:line-through;'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'insert':
# Extra words - orange
actual_html.extend([f"<span style='background-color:#fff3cd; color:#856404; padding:2px 4px; margin:1px; border-radius:3px; font-weight:bold;'>+{w}</span>" for w in hyp_words[j1:j2]])
# Create the comparison HTML
comparison_html = f"""
<div style='font-family: monospace; line-height: 2;'>
<div style='margin-bottom: 15px;'>
<strong>📝 Expected:</strong><br>
<div style='padding: 10px; background-color: #f8f9fa; border-radius: 5px; margin-top: 5px;'>
{" ".join(expected_html)}
</div>
</div>
<div style='margin-bottom: 15px;'>
<strong>🎤 You said:</strong><br>
<div style='padding: 10px; background-color: #f8f9fa; border-radius: 5px; margin-top: 5px;'>
{" ".join(actual_html)}
</div>
</div>
<div style='font-size: 12px; color: #6c757d; margin-top: 10px;'>
<span style='background-color:#d4edda; padding:2px 4px; border-radius:3px;'>✓ Correct</span>
<span style='background-color:#f8d7da; padding:2px 4px; border-radius:3px; margin-left:5px;'>✗ Expected</span>
<span style='background-color:#fff3cd; padding:2px 4px; border-radius:3px; margin-left:5px;'>+ Extra/Wrong</span>
</div>
</div>
"""
return comparison_html
def char_level_highlight(ref, hyp):
sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
expected_chars = []
actual_chars = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
# Correct characters - green background
expected_chars.extend([f"<span style='background-color:#d4edda; color:#155724;'>{c}</span>" for c in ref[i1:i2]])
actual_chars.extend([f"<span style='background-color:#d4edda; color:#155724;'>{c}</span>" for c in hyp[j1:j2]])
elif tag == 'replace':
# Different characters - red for expected, orange for actual
expected_chars.extend([f"<span style='background-color:#f8d7da; color:#721c24; text-decoration:underline;'>{c}</span>" for c in ref[i1:i2]])
actual_chars.extend([f"<span style='background-color:#fff3cd; color:#856404; font-weight:bold;'>{c}</span>" for c in hyp[j1:j2]])
elif tag == 'delete':
# Missing characters - red with strikethrough
expected_chars.extend([f"<span style='background-color:#f8d7da; color:#721c24; text-decoration:line-through;'>{c}</span>" for c in ref[i1:i2]])
elif tag == 'insert':
# Extra characters - orange with + prefix
actual_chars.extend([f"<span style='background-color:#fff3cd; color:#856404; font-weight:bold;'>{c}</span>" for c in hyp[j1:j2]])
# Character-level comparison
char_comparison_html = f"""
<div style='font-family: monospace; line-height: 2; font-size: 16px;'>
<div style='margin-bottom: 15px;'>
<strong>📝 Expected (character-level):</strong><br>
<div style='padding: 10px; background-color: #f8f9fa; border-radius: 5px; margin-top: 5px; word-break: break-all; letter-spacing: 1px;'>
{"".join(expected_chars)}
</div>
</div>
<div style='margin-bottom: 15px;'>
<strong>🎤 You said (character-level):</strong><br>
<div style='padding: 10px; background-color: #f8f9fa; border-radius: 5px; margin-top: 5px; word-break: break-all; letter-spacing: 1px;'>
{"".join(actual_chars)}
</div>
</div>
<div style='font-size: 12px; color: #6c757d; margin-top: 10px;'>
Character-level analysis helps identify pronunciation issues within words
</div>
</div>
"""
return char_comparison_html
# ---------------- MAIN ---------------- #
@spaces.GPU
def compare_pronunciation(audio, language_choice, intended_sentence,
pass1_beam, pass1_temp, pass1_condition):
if audio is None or not intended_sentence.strip():
return ("No audio or intended sentence.", "", "", "", "", "", "", "", "❌ Please provide audio and sentence")
try:
primer_weak, primer_strong = LANG_PRIMERS[language_choice]
# Pass 1: raw transcription with user-configured decoding parameters
status_msg = f"🔄 Transcribing with {language_choice} model..."
actual_text = transcribe_once(audio, language_choice, primer_weak,
pass1_beam, pass1_temp, pass1_condition)
if actual_text.startswith("Error"):
return (actual_text, "", "", "", "", "", "", "", "❌ Transcription failed")
# Pass 2: strict transcription biased by intended sentence (fixed decoding params)
strict_prompt = f"{primer_strong}\nTarget: {intended_sentence}"
corrected_text = transcribe_once(audio, language_choice, strict_prompt,
beam_size=3, temperature=0.0, condition_on_previous_text=False)
# Compute WER and CER
try:
wer_val = jiwer.wer(intended_sentence, actual_text)
cer_val = jiwer.cer(intended_sentence, actual_text)
except:
wer_val = 1.0
cer_val = 1.0
# Transliteration of Pass 1 output
hk_translit = transliterate_to_hk(actual_text, language_choice) if is_script(actual_text, language_choice) else f"[Script mismatch: expected {language_choice}]"
# Highlight word-level and character-level differences
diff_html = highlight_differences(intended_sentence, actual_text)
char_html = char_level_highlight(intended_sentence, actual_text)
# Success status
status_msg = f"✅ Analysis complete! WER: {wer_val:.2f}"
return (actual_text, corrected_text, hk_translit, f"{wer_val:.2f}", f"{cer_val:.2f}",
diff_html, char_html, intended_sentence, status_msg)
except Exception as e:
error_msg = f"❌ Error: {str(e)}"
clear_gpu_memory()
return ("Error occurred", "", "", "", "", "", "", "", error_msg)
# ---------------- UI ---------------- #
with gr.Blocks(title="Pronunciation Comparator") as demo:
gr.Markdown("## 🎙 Pronunciation Comparator - English, Tamil & Malayalam")
gr.Markdown("Practice pronunciation with specialized Whisper models for each language!")
gr.Markdown("⚠️ **Note**: Models load on-demand to optimize memory usage. First use may take longer.")
with gr.Row():
lang_choice = gr.Dropdown(choices=list(LANG_CODES.keys()), value="Malayalam", label="Language")
gen_btn = gr.Button("🎲 Generate Sentence")
intended_display = gr.Textbox(label="Generated Sentence (Read aloud)", interactive=False)
# Status indicator
status_display = gr.Textbox(label="Status", interactive=False, value="🟢 Ready")
with gr.Row():
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record your pronunciation")
with gr.Column():
gr.Markdown("### ⚙️ Transcription Parameters")
with gr.Row():
pass1_beam = gr.Slider(1, 4, value=2, step=1, label="Beam Size (lower = faster)")
pass1_temp = gr.Slider(0.0, 0.8, value=0.2, step=0.1, label="Temperature")
pass1_condition = gr.Checkbox(value=False, label="Condition on previous text")
submit_btn = gr.Button("🔍 Analyze Pronunciation", variant="primary", size="lg")
gr.Markdown("### 📊 Analysis Results")
with gr.Row():
pass1_out = gr.Textbox(label="Pass 1: What You Actually Said")
pass2_out = gr.Textbox(label="Pass 2: Target-Biased Output")
with gr.Row():
hk_out = gr.Textbox(label="Harvard-Kyoto Transliteration (Pass 1)")
wer_out = gr.Textbox(label="Word Error Rate (WER)")
cer_out = gr.Textbox(label="Character Error Rate (CER)")
gr.Markdown("### 🎯 Visual Comparison")
gr.Markdown("Compare your pronunciation with the expected text to identify areas for improvement")
diff_html_box = gr.HTML(label="Word-Level Comparison")
char_html_box = gr.HTML(label="Character-Level Analysis")
# Event handlers
gen_btn.click(fn=get_random_sentence, inputs=[lang_choice], outputs=[intended_display])
submit_btn.click(
fn=compare_pronunciation,
inputs=[audio_input, lang_choice, intended_display, pass1_beam, pass1_temp, pass1_condition],
outputs=[
pass1_out, pass2_out, hk_out, wer_out, cer_out,
diff_html_box, char_html_box, intended_display, status_display
]
)
if __name__ == "__main__":
demo.launch()