File size: 1,571 Bytes
3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 3124002 f4e6c17 6d5478f f4e6c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
title: Emotion Detection App
emoji: π
colorFrom: indigo
colorTo: pink
sdk: gradio
sdk_version: "4.27.0"
app_file: app.py
pinned: false
---
# π Emotion Detection from Text using BERT
Welcome to the **Emotion Detection Web App**! This application uses a fine-tuned BERT model to detect human emotions from short pieces of text.
---
## π Demo
π Try the live app: [Click here to open the web app](https://huggingface.co/spaces/sujith13082003/emotion_detection)
---
## π Description
This project leverages the `nateraw/bert-base-uncased-emotion` model from Hugging Face Transformers to classify input text into one of six emotions:
- π’ Sadness
- π Joy
- π Love
- π‘ Anger
- π± Fear
- π² Surprise
It uses:
- **Hugging Face Transformers** for model and tokenizer
- **PyTorch** for deep learning inference
- **Gradio** to build an interactive web interface
---
## π§ Model Used
- **Model Name**: `nateraw/bert-base-uncased-emotion`
- **Base Architecture**: BERT (uncased)
- **Dataset**: GoEmotions subset
---
## π¦ Dependencies
Dependencies are defined in `requirements.txt`:
- `transformers`
- `torch`
- `gradio`
---
## π Use Cases
- Social media sentiment analysis
- Customer feedback classification
- Chatbot emotion understanding
- Mental health applications
---
## π¨βπ» Author
- **Sujith Kumar**
- Hugging Face: [@sujith13082003](https://huggingface.co/sujith13082003)
---
## π License
This project is for educational and research purposes. Refer to individual library licenses for commercial use.
|