File size: 12,525 Bytes
1c7a288
24ba781
 
 
 
 
3acced2
24ba781
245f6f3
24ba781
 
6648f74
24ba781
 
 
6648f74
 
 
24ba781
6648f74
 
24ba781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245f6f3
 
 
 
 
 
 
 
 
 
 
 
24ba781
 
 
 
6648f74
 
 
24ba781
 
 
3acced2
 
24ba781
 
3acced2
 
24ba781
3acced2
24ba781
 
 
 
245f6f3
 
 
 
 
3acced2
 
 
 
 
 
 
 
 
 
 
245f6f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3acced2
245f6f3
3acced2
24ba781
 
 
 
 
 
 
 
3acced2
 
 
24ba781
 
 
 
 
 
 
 
 
 
3acced2
24ba781
 
 
 
3acced2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ba781
 
 
 
 
6648f74
24ba781
6648f74
24ba781
 
 
 
 
 
6648f74
24ba781
6648f74
24ba781
 
 
3acced2
 
 
 
245f6f3
 
24ba781
3acced2
 
 
 
24ba781
 
 
 
 
 
245f6f3
 
 
 
 
 
 
 
 
 
 
 
 
 
24ba781
 
 
 
6648f74
24ba781
 
 
 
 
 
 
 
 
3acced2
 
24ba781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3acced2
245f6f3
 
 
 
 
 
24ba781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3acced2
 
 
 
 
 
 
 
 
 
 
 
 
114e659
 
24ba781
 
 
245f6f3
24ba781
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import streamlit as st
from streamlit_option_menu import option_menu
import fitz  # PyMuPDF
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
import requests
import os
import time

# Page configuration
st.set_page_config(
    page_title="PDF Study Assistant",
    page_icon="πŸ“š",
    layout="wide",
    initial_sidebar_state="collapsed"
)

# Custom CSS for colorful design
st.markdown("""
<style>
    :root {
        --primary: #ff4b4b;
        --secondary: #ff9a3d;
        --accent1: #ffcb74;
        --accent2: #3a86ff;
        --background: #f0f2f6;
        --card: #ffffff;
    }
    
    .stApp {
        background: linear-gradient(135deg, var(--background) 0%, #e0e5ec 100%);
    }
    
    .stButton>button {
        background: linear-gradient(to right, var(--secondary), var(--primary));
        color: white;
        border-radius: 12px;
        padding: 8px 20px;
        font-weight: 600;
    }
    
    .stTextInput>div>div>input {
        border-radius: 12px;
        border: 2px solid var(--accent2);
        padding: 10px;
    }
    
    .card {
        background: var(--card);
        border-radius: 15px;
        box-shadow: 0 8px 16px rgba(0,0,0,0.1);
        padding: 20px;
        margin-bottom: 20px;
    }
    
    .header {
        background: linear-gradient(to right, var(--accent2), var(--primary));
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        text-align: center;
        margin-bottom: 30px;
    }
    
    .tab-content {
        animation: fadeIn 0.5s ease-in-out;
    }
    
    .error {
        background-color: #ffebee;
        border-left: 4px solid #f44336;
        padding: 10px;
    }
    
    .info {
        background-color: #e3f2fd;
        border-left: 4px solid #2196f3;
        padding: 10px;
    }
    
    @keyframes fadeIn {
        from { opacity: 0; }
        to { opacity: 1; }
    }
</style>
""", unsafe_allow_html=True)

# Initialize session state
if 'pdf_processed' not in st.session_state:
    st.session_state.pdf_processed = False
if 'vector_store' not in st.session_state:
    st.session_state.vector_store = None
if 'pages' not in st.session_state:
    st.session_state.pages = []
if 'history' not in st.session_state:
    st.session_state.history = []

# Load embedding model with caching
@st.cache_resource
def load_embedding_model():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

def query_hf_inference_api(prompt, max_tokens=200):
    """Query Hugging Face Inference API with error handling and retry"""
    MODEL = "google/flan-t5-large"  # Smaller, freely accessible model
    API_URL = f"https://api-inference.huggingface.co/models/{MODEL}"
    headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"} if os.getenv('HF_API_KEY') else {}
    payload = {
        "inputs": prompt,
        "parameters": {
            "max_new_tokens": max_tokens,
            "temperature": 0.5,
            "do_sample": False
        }
    }
    
    try:
        response = requests.post(API_URL, headers=headers, json=payload)
        
        if response.status_code == 200:
            result = response.json()
            return result[0]['generated_text'] if result else ""
        
        elif response.status_code == 403:
            st.error("403 Forbidden: Please check your Hugging Face API token and model access")
            st.markdown("""
            <div class="info">
                <h4>How to fix this:</h4>
                <ol>
                    <li>Get your free Hugging Face token from <a href="https://huggingface.co/settings/tokens" target="_blank">https://huggingface.co/settings/tokens</a></li>
                    <li>Add it to your Space secrets as <code>HF_API_KEY</code></li>
                    <li>Accept terms for the model: <a href="https://huggingface.co/google/flan-t5-large" target="_blank">https://huggingface.co/google/flan-t5-large</a></li>
                </ol>
            </div>
            """, unsafe_allow_html=True)
            return ""
        
        elif response.status_code == 429:
            st.warning("Rate limit exceeded. Waiting and retrying...")
            time.sleep(5)  # Wait 5 seconds before retrying
            return query_hf_inference_api(prompt, max_tokens)
        
        else:
            st.error(f"API Error {response.status_code}: {response.text[:200]}")
            return ""
            
    except Exception as e:
        st.error(f"Connection error: {str(e)}")
        return ""

def process_pdf(pdf_file):
    """Extract text from PDF and create vector store"""
    with st.spinner("πŸ“– Reading PDF..."):
        doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
        text = ""
        st.session_state.pages = []
        for page in doc:
            page_text = page.get_text()
            text += page_text
            st.session_state.pages.append(page_text)
    
    with st.spinner("πŸ” Processing text..."):
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=200,
            length_function=len
        )
        chunks = text_splitter.split_text(text)
        
        embeddings = load_embedding_model()
        st.session_state.vector_store = FAISS.from_texts(chunks, embeddings)
    
    st.session_state.pdf_processed = True
    st.success("βœ… PDF processed successfully!")

def ask_question(question):
    """Answer a question using the vector store and Hugging Face API"""
    if not st.session_state.vector_store:
        return "PDF not processed yet", []
    
    # Find relevant passages
    docs = st.session_state.vector_store.similarity_search(question, k=3)
    context = "\n\n".join([doc.page_content for doc in docs])
    
    # Format prompt for the model
    prompt = f"""
    Based on the following context, answer the question. 
    If the answer isn't in the context, say "I don't know".
    
    Context:
    {context}
    
    Question: {question}
    Answer:
    """
    
    # Query the model
    answer = query_hf_inference_api(prompt)
    
    # Add to history
    st.session_state.history.append({
        "question": question,
        "answer": answer,
        "sources": [doc.page_content for doc in docs]
    })
    
    return answer, docs

def generate_qa_for_chapter(start_page, end_page):
    """Generate Q&A for specific chapter pages"""
    if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
        st.error("Invalid page range")
        return []
    
    chapter_text = "\n".join(st.session_state.pages[start_page-1:end_page])
    
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=800,
        chunk_overlap=100,
        length_function=len
    )
    chunks = text_splitter.split_text(chapter_text)
    
    qa_pairs = []
    
    with st.spinner(f"🧠 Generating Q&A for pages {start_page}-{end_page}..."):
        for i, chunk in enumerate(chunks):
            if i % 2 == 0:  # Generate question
                prompt = f"Based on this text, generate one study question: {chunk[:500]}"
                question = query_hf_inference_api(prompt, max_tokens=100)
                if question and not question.endswith("?"):
                    question += "?"
                if question:  # Only add if we got a valid question
                    qa_pairs.append((question, ""))
            else:  # Generate answer
                if qa_pairs:  # Ensure we have a question to answer
                    prompt = f"Answer this question: {qa_pairs[-1][0]} using this context: {chunk[:500]}"
                    answer = query_hf_inference_api(prompt, max_tokens=200)
                    qa_pairs[-1] = (qa_pairs[-1][0], answer)
    
    return qa_pairs

# App header
st.markdown("<h1 class='header'>πŸ“š PDF Study Assistant</h1>", unsafe_allow_html=True)

# API Token Instructions
if not os.getenv("HF_API_KEY"):
    st.markdown("""
    <div class="info">
        <h4>Setup Required:</h4>
        <p>This app requires a free Hugging Face API token to work:</p>
        <ol>
            <li>Get your token from <a href="https://huggingface.co/settings/tokens" target="_blank">https://huggingface.co/settings/tokens</a></li>
            <li>Add it to your Space secrets as <code>HF_API_KEY</code></li>
            <li>Accept terms for the model: <a href="https://huggingface.co/google/flan-t5-large" target="_blank">google/flan-t5-large</a></li>
        </ol>
    </div>
    """, unsafe_allow_html=True)

# PDF Upload Section
with st.container():
    st.subheader("πŸ“€ Upload Your Textbook/Notes")
    pdf_file = st.file_uploader("", type="pdf", label_visibility="collapsed")

# Main content
if pdf_file:
    if not st.session_state.pdf_processed:
        process_pdf(pdf_file)
    
    if st.session_state.pdf_processed:
        # Navigation tabs
        selected_tab = option_menu(
            None,
            ["Ask Questions", "Generate Chapter Q&A", "History"],
            icons=["chat", "book", "clock-history"],
            menu_icon="cast",
            default_index=0,
            orientation="horizontal",
            styles={
                "container": {"padding": "0!important", "background-color": "#f9f9f9"},
                "nav-link": {"font-size": "16px", "font-weight": "bold"},
                "nav-link-selected": {"background": "linear-gradient(to right, #3a86ff, #ff4b4b)"},
            }
        )
        
        # Question Answering Tab
        if selected_tab == "Ask Questions":
            st.markdown("### πŸ’¬ Ask Questions About Your Document")
            user_question = st.text_input("Type your question here:", key="user_question")
            
            if user_question:
                with st.spinner("πŸ€” Thinking..."):
                    answer, docs = ask_question(user_question)
                    if answer:
                        st.markdown(f"<div class='card'><b>Answer:</b> {answer}</div>", unsafe_allow_html=True)
                        
                        with st.expander("πŸ” See source passages"):
                            for i, doc in enumerate(docs):
                                st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
        
        # Chapter Q&A Generation Tab
        elif selected_tab == "Generate Chapter Q&A":
            st.markdown("### πŸ“ Generate Q&A for Specific Chapter")
            col1, col2 = st.columns(2)
            with col1:
                start_page = st.number_input("Start Page", min_value=1, max_value=len(st.session_state.pages), value=1)
            with col2:
                end_page = st.number_input("End Page", min_value=1, max_value=len(st.session_state.pages), value=min(5, len(st.session_state.pages)))
            
            if st.button("Generate Q&A", key="generate_qa"):
                qa_pairs = generate_qa_for_chapter(start_page, end_page)
                
                if qa_pairs:
                    st.markdown(f"<h4>πŸ“– Generated Questions for Pages {start_page}-{end_page}</h4>", unsafe_allow_html=True)
                    for i, (question, answer) in enumerate(qa_pairs):
                        st.markdown(f"""
                        <div class='card'>
                            <b>Q{i+1}:</b> {question}<br>
                            <b>A{i+1}:</b> {answer}
                        </div>
                        """, unsafe_allow_html=True)
                else:
                    st.warning("No Q&A pairs generated. Try a different page range.")
                    
        # History Tab
        elif selected_tab == "History":
            st.markdown("### ⏳ Question History")
            if not st.session_state.history:
                st.info("No questions asked yet.")
            else:
                for i, item in enumerate(reversed(st.session_state.history)):
                    with st.expander(f"Q{i+1}: {item['question']}"):
                        st.markdown(f"**Answer:** {item['answer']}")
                        st.markdown("**Source Passages:**")
                        for j, source in enumerate(item['sources']):
                            st.markdown(f"{j+1}. {source[:500]}...")

# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; padding: 20px;">
    Built with ❀️ for students | PDF Study Assistant v3.0
</div>
""", unsafe_allow_html=True)