Spaces:
Sleeping
Sleeping
File size: 12,525 Bytes
1c7a288 24ba781 3acced2 24ba781 245f6f3 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 245f6f3 24ba781 6648f74 24ba781 3acced2 24ba781 3acced2 24ba781 3acced2 24ba781 245f6f3 3acced2 245f6f3 3acced2 245f6f3 3acced2 24ba781 3acced2 24ba781 3acced2 24ba781 3acced2 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 6648f74 24ba781 3acced2 245f6f3 24ba781 3acced2 24ba781 245f6f3 24ba781 6648f74 24ba781 3acced2 24ba781 3acced2 245f6f3 24ba781 3acced2 114e659 24ba781 245f6f3 24ba781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import streamlit as st
from streamlit_option_menu import option_menu
import fitz # PyMuPDF
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
import requests
import os
import time
# Page configuration
st.set_page_config(
page_title="PDF Study Assistant",
page_icon="π",
layout="wide",
initial_sidebar_state="collapsed"
)
# Custom CSS for colorful design
st.markdown("""
<style>
:root {
--primary: #ff4b4b;
--secondary: #ff9a3d;
--accent1: #ffcb74;
--accent2: #3a86ff;
--background: #f0f2f6;
--card: #ffffff;
}
.stApp {
background: linear-gradient(135deg, var(--background) 0%, #e0e5ec 100%);
}
.stButton>button {
background: linear-gradient(to right, var(--secondary), var(--primary));
color: white;
border-radius: 12px;
padding: 8px 20px;
font-weight: 600;
}
.stTextInput>div>div>input {
border-radius: 12px;
border: 2px solid var(--accent2);
padding: 10px;
}
.card {
background: var(--card);
border-radius: 15px;
box-shadow: 0 8px 16px rgba(0,0,0,0.1);
padding: 20px;
margin-bottom: 20px;
}
.header {
background: linear-gradient(to right, var(--accent2), var(--primary));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-align: center;
margin-bottom: 30px;
}
.tab-content {
animation: fadeIn 0.5s ease-in-out;
}
.error {
background-color: #ffebee;
border-left: 4px solid #f44336;
padding: 10px;
}
.info {
background-color: #e3f2fd;
border-left: 4px solid #2196f3;
padding: 10px;
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'pdf_processed' not in st.session_state:
st.session_state.pdf_processed = False
if 'vector_store' not in st.session_state:
st.session_state.vector_store = None
if 'pages' not in st.session_state:
st.session_state.pages = []
if 'history' not in st.session_state:
st.session_state.history = []
# Load embedding model with caching
@st.cache_resource
def load_embedding_model():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
def query_hf_inference_api(prompt, max_tokens=200):
"""Query Hugging Face Inference API with error handling and retry"""
MODEL = "google/flan-t5-large" # Smaller, freely accessible model
API_URL = f"https://api-inference.huggingface.co/models/{MODEL}"
headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"} if os.getenv('HF_API_KEY') else {}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": 0.5,
"do_sample": False
}
}
try:
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
return result[0]['generated_text'] if result else ""
elif response.status_code == 403:
st.error("403 Forbidden: Please check your Hugging Face API token and model access")
st.markdown("""
<div class="info">
<h4>How to fix this:</h4>
<ol>
<li>Get your free Hugging Face token from <a href="https://huggingface.co/settings/tokens" target="_blank">https://huggingface.co/settings/tokens</a></li>
<li>Add it to your Space secrets as <code>HF_API_KEY</code></li>
<li>Accept terms for the model: <a href="https://huggingface.co/google/flan-t5-large" target="_blank">https://huggingface.co/google/flan-t5-large</a></li>
</ol>
</div>
""", unsafe_allow_html=True)
return ""
elif response.status_code == 429:
st.warning("Rate limit exceeded. Waiting and retrying...")
time.sleep(5) # Wait 5 seconds before retrying
return query_hf_inference_api(prompt, max_tokens)
else:
st.error(f"API Error {response.status_code}: {response.text[:200]}")
return ""
except Exception as e:
st.error(f"Connection error: {str(e)}")
return ""
def process_pdf(pdf_file):
"""Extract text from PDF and create vector store"""
with st.spinner("π Reading PDF..."):
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
text = ""
st.session_state.pages = []
for page in doc:
page_text = page.get_text()
text += page_text
st.session_state.pages.append(page_text)
with st.spinner("π Processing text..."):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
embeddings = load_embedding_model()
st.session_state.vector_store = FAISS.from_texts(chunks, embeddings)
st.session_state.pdf_processed = True
st.success("β
PDF processed successfully!")
def ask_question(question):
"""Answer a question using the vector store and Hugging Face API"""
if not st.session_state.vector_store:
return "PDF not processed yet", []
# Find relevant passages
docs = st.session_state.vector_store.similarity_search(question, k=3)
context = "\n\n".join([doc.page_content for doc in docs])
# Format prompt for the model
prompt = f"""
Based on the following context, answer the question.
If the answer isn't in the context, say "I don't know".
Context:
{context}
Question: {question}
Answer:
"""
# Query the model
answer = query_hf_inference_api(prompt)
# Add to history
st.session_state.history.append({
"question": question,
"answer": answer,
"sources": [doc.page_content for doc in docs]
})
return answer, docs
def generate_qa_for_chapter(start_page, end_page):
"""Generate Q&A for specific chapter pages"""
if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
st.error("Invalid page range")
return []
chapter_text = "\n".join(st.session_state.pages[start_page-1:end_page])
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=100,
length_function=len
)
chunks = text_splitter.split_text(chapter_text)
qa_pairs = []
with st.spinner(f"π§ Generating Q&A for pages {start_page}-{end_page}..."):
for i, chunk in enumerate(chunks):
if i % 2 == 0: # Generate question
prompt = f"Based on this text, generate one study question: {chunk[:500]}"
question = query_hf_inference_api(prompt, max_tokens=100)
if question and not question.endswith("?"):
question += "?"
if question: # Only add if we got a valid question
qa_pairs.append((question, ""))
else: # Generate answer
if qa_pairs: # Ensure we have a question to answer
prompt = f"Answer this question: {qa_pairs[-1][0]} using this context: {chunk[:500]}"
answer = query_hf_inference_api(prompt, max_tokens=200)
qa_pairs[-1] = (qa_pairs[-1][0], answer)
return qa_pairs
# App header
st.markdown("<h1 class='header'>π PDF Study Assistant</h1>", unsafe_allow_html=True)
# API Token Instructions
if not os.getenv("HF_API_KEY"):
st.markdown("""
<div class="info">
<h4>Setup Required:</h4>
<p>This app requires a free Hugging Face API token to work:</p>
<ol>
<li>Get your token from <a href="https://huggingface.co/settings/tokens" target="_blank">https://huggingface.co/settings/tokens</a></li>
<li>Add it to your Space secrets as <code>HF_API_KEY</code></li>
<li>Accept terms for the model: <a href="https://huggingface.co/google/flan-t5-large" target="_blank">google/flan-t5-large</a></li>
</ol>
</div>
""", unsafe_allow_html=True)
# PDF Upload Section
with st.container():
st.subheader("π€ Upload Your Textbook/Notes")
pdf_file = st.file_uploader("", type="pdf", label_visibility="collapsed")
# Main content
if pdf_file:
if not st.session_state.pdf_processed:
process_pdf(pdf_file)
if st.session_state.pdf_processed:
# Navigation tabs
selected_tab = option_menu(
None,
["Ask Questions", "Generate Chapter Q&A", "History"],
icons=["chat", "book", "clock-history"],
menu_icon="cast",
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "#f9f9f9"},
"nav-link": {"font-size": "16px", "font-weight": "bold"},
"nav-link-selected": {"background": "linear-gradient(to right, #3a86ff, #ff4b4b)"},
}
)
# Question Answering Tab
if selected_tab == "Ask Questions":
st.markdown("### π¬ Ask Questions About Your Document")
user_question = st.text_input("Type your question here:", key="user_question")
if user_question:
with st.spinner("π€ Thinking..."):
answer, docs = ask_question(user_question)
if answer:
st.markdown(f"<div class='card'><b>Answer:</b> {answer}</div>", unsafe_allow_html=True)
with st.expander("π See source passages"):
for i, doc in enumerate(docs):
st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
# Chapter Q&A Generation Tab
elif selected_tab == "Generate Chapter Q&A":
st.markdown("### π Generate Q&A for Specific Chapter")
col1, col2 = st.columns(2)
with col1:
start_page = st.number_input("Start Page", min_value=1, max_value=len(st.session_state.pages), value=1)
with col2:
end_page = st.number_input("End Page", min_value=1, max_value=len(st.session_state.pages), value=min(5, len(st.session_state.pages)))
if st.button("Generate Q&A", key="generate_qa"):
qa_pairs = generate_qa_for_chapter(start_page, end_page)
if qa_pairs:
st.markdown(f"<h4>π Generated Questions for Pages {start_page}-{end_page}</h4>", unsafe_allow_html=True)
for i, (question, answer) in enumerate(qa_pairs):
st.markdown(f"""
<div class='card'>
<b>Q{i+1}:</b> {question}<br>
<b>A{i+1}:</b> {answer}
</div>
""", unsafe_allow_html=True)
else:
st.warning("No Q&A pairs generated. Try a different page range.")
# History Tab
elif selected_tab == "History":
st.markdown("### β³ Question History")
if not st.session_state.history:
st.info("No questions asked yet.")
else:
for i, item in enumerate(reversed(st.session_state.history)):
with st.expander(f"Q{i+1}: {item['question']}"):
st.markdown(f"**Answer:** {item['answer']}")
st.markdown("**Source Passages:**")
for j, source in enumerate(item['sources']):
st.markdown(f"{j+1}. {source[:500]}...")
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; padding: 20px;">
Built with β€οΈ for students | PDF Study Assistant v3.0
</div>
""", unsafe_allow_html=True) |