sunbal7's picture
Update app.py
245f6f3 verified
raw
history blame
12.5 kB
import streamlit as st
from streamlit_option_menu import option_menu
import fitz # PyMuPDF
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
import requests
import os
import time
# Page configuration
st.set_page_config(
page_title="PDF Study Assistant",
page_icon="πŸ“š",
layout="wide",
initial_sidebar_state="collapsed"
)
# Custom CSS for colorful design
st.markdown("""
<style>
:root {
--primary: #ff4b4b;
--secondary: #ff9a3d;
--accent1: #ffcb74;
--accent2: #3a86ff;
--background: #f0f2f6;
--card: #ffffff;
}
.stApp {
background: linear-gradient(135deg, var(--background) 0%, #e0e5ec 100%);
}
.stButton>button {
background: linear-gradient(to right, var(--secondary), var(--primary));
color: white;
border-radius: 12px;
padding: 8px 20px;
font-weight: 600;
}
.stTextInput>div>div>input {
border-radius: 12px;
border: 2px solid var(--accent2);
padding: 10px;
}
.card {
background: var(--card);
border-radius: 15px;
box-shadow: 0 8px 16px rgba(0,0,0,0.1);
padding: 20px;
margin-bottom: 20px;
}
.header {
background: linear-gradient(to right, var(--accent2), var(--primary));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-align: center;
margin-bottom: 30px;
}
.tab-content {
animation: fadeIn 0.5s ease-in-out;
}
.error {
background-color: #ffebee;
border-left: 4px solid #f44336;
padding: 10px;
}
.info {
background-color: #e3f2fd;
border-left: 4px solid #2196f3;
padding: 10px;
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'pdf_processed' not in st.session_state:
st.session_state.pdf_processed = False
if 'vector_store' not in st.session_state:
st.session_state.vector_store = None
if 'pages' not in st.session_state:
st.session_state.pages = []
if 'history' not in st.session_state:
st.session_state.history = []
# Load embedding model with caching
@st.cache_resource
def load_embedding_model():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
def query_hf_inference_api(prompt, max_tokens=200):
"""Query Hugging Face Inference API with error handling and retry"""
MODEL = "google/flan-t5-large" # Smaller, freely accessible model
API_URL = f"https://api-inference.huggingface.co/models/{MODEL}"
headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"} if os.getenv('HF_API_KEY') else {}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": 0.5,
"do_sample": False
}
}
try:
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
return result[0]['generated_text'] if result else ""
elif response.status_code == 403:
st.error("403 Forbidden: Please check your Hugging Face API token and model access")
st.markdown("""
<div class="info">
<h4>How to fix this:</h4>
<ol>
<li>Get your free Hugging Face token from <a href="https://huggingface.co/settings/tokens" target="_blank">https://huggingface.co/settings/tokens</a></li>
<li>Add it to your Space secrets as <code>HF_API_KEY</code></li>
<li>Accept terms for the model: <a href="https://huggingface.co/google/flan-t5-large" target="_blank">https://huggingface.co/google/flan-t5-large</a></li>
</ol>
</div>
""", unsafe_allow_html=True)
return ""
elif response.status_code == 429:
st.warning("Rate limit exceeded. Waiting and retrying...")
time.sleep(5) # Wait 5 seconds before retrying
return query_hf_inference_api(prompt, max_tokens)
else:
st.error(f"API Error {response.status_code}: {response.text[:200]}")
return ""
except Exception as e:
st.error(f"Connection error: {str(e)}")
return ""
def process_pdf(pdf_file):
"""Extract text from PDF and create vector store"""
with st.spinner("πŸ“– Reading PDF..."):
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
text = ""
st.session_state.pages = []
for page in doc:
page_text = page.get_text()
text += page_text
st.session_state.pages.append(page_text)
with st.spinner("πŸ” Processing text..."):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
embeddings = load_embedding_model()
st.session_state.vector_store = FAISS.from_texts(chunks, embeddings)
st.session_state.pdf_processed = True
st.success("βœ… PDF processed successfully!")
def ask_question(question):
"""Answer a question using the vector store and Hugging Face API"""
if not st.session_state.vector_store:
return "PDF not processed yet", []
# Find relevant passages
docs = st.session_state.vector_store.similarity_search(question, k=3)
context = "\n\n".join([doc.page_content for doc in docs])
# Format prompt for the model
prompt = f"""
Based on the following context, answer the question.
If the answer isn't in the context, say "I don't know".
Context:
{context}
Question: {question}
Answer:
"""
# Query the model
answer = query_hf_inference_api(prompt)
# Add to history
st.session_state.history.append({
"question": question,
"answer": answer,
"sources": [doc.page_content for doc in docs]
})
return answer, docs
def generate_qa_for_chapter(start_page, end_page):
"""Generate Q&A for specific chapter pages"""
if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
st.error("Invalid page range")
return []
chapter_text = "\n".join(st.session_state.pages[start_page-1:end_page])
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=100,
length_function=len
)
chunks = text_splitter.split_text(chapter_text)
qa_pairs = []
with st.spinner(f"🧠 Generating Q&A for pages {start_page}-{end_page}..."):
for i, chunk in enumerate(chunks):
if i % 2 == 0: # Generate question
prompt = f"Based on this text, generate one study question: {chunk[:500]}"
question = query_hf_inference_api(prompt, max_tokens=100)
if question and not question.endswith("?"):
question += "?"
if question: # Only add if we got a valid question
qa_pairs.append((question, ""))
else: # Generate answer
if qa_pairs: # Ensure we have a question to answer
prompt = f"Answer this question: {qa_pairs[-1][0]} using this context: {chunk[:500]}"
answer = query_hf_inference_api(prompt, max_tokens=200)
qa_pairs[-1] = (qa_pairs[-1][0], answer)
return qa_pairs
# App header
st.markdown("<h1 class='header'>πŸ“š PDF Study Assistant</h1>", unsafe_allow_html=True)
# API Token Instructions
if not os.getenv("HF_API_KEY"):
st.markdown("""
<div class="info">
<h4>Setup Required:</h4>
<p>This app requires a free Hugging Face API token to work:</p>
<ol>
<li>Get your token from <a href="https://huggingface.co/settings/tokens" target="_blank">https://huggingface.co/settings/tokens</a></li>
<li>Add it to your Space secrets as <code>HF_API_KEY</code></li>
<li>Accept terms for the model: <a href="https://huggingface.co/google/flan-t5-large" target="_blank">google/flan-t5-large</a></li>
</ol>
</div>
""", unsafe_allow_html=True)
# PDF Upload Section
with st.container():
st.subheader("πŸ“€ Upload Your Textbook/Notes")
pdf_file = st.file_uploader("", type="pdf", label_visibility="collapsed")
# Main content
if pdf_file:
if not st.session_state.pdf_processed:
process_pdf(pdf_file)
if st.session_state.pdf_processed:
# Navigation tabs
selected_tab = option_menu(
None,
["Ask Questions", "Generate Chapter Q&A", "History"],
icons=["chat", "book", "clock-history"],
menu_icon="cast",
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "#f9f9f9"},
"nav-link": {"font-size": "16px", "font-weight": "bold"},
"nav-link-selected": {"background": "linear-gradient(to right, #3a86ff, #ff4b4b)"},
}
)
# Question Answering Tab
if selected_tab == "Ask Questions":
st.markdown("### πŸ’¬ Ask Questions About Your Document")
user_question = st.text_input("Type your question here:", key="user_question")
if user_question:
with st.spinner("πŸ€” Thinking..."):
answer, docs = ask_question(user_question)
if answer:
st.markdown(f"<div class='card'><b>Answer:</b> {answer}</div>", unsafe_allow_html=True)
with st.expander("πŸ” See source passages"):
for i, doc in enumerate(docs):
st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
# Chapter Q&A Generation Tab
elif selected_tab == "Generate Chapter Q&A":
st.markdown("### πŸ“ Generate Q&A for Specific Chapter")
col1, col2 = st.columns(2)
with col1:
start_page = st.number_input("Start Page", min_value=1, max_value=len(st.session_state.pages), value=1)
with col2:
end_page = st.number_input("End Page", min_value=1, max_value=len(st.session_state.pages), value=min(5, len(st.session_state.pages)))
if st.button("Generate Q&A", key="generate_qa"):
qa_pairs = generate_qa_for_chapter(start_page, end_page)
if qa_pairs:
st.markdown(f"<h4>πŸ“– Generated Questions for Pages {start_page}-{end_page}</h4>", unsafe_allow_html=True)
for i, (question, answer) in enumerate(qa_pairs):
st.markdown(f"""
<div class='card'>
<b>Q{i+1}:</b> {question}<br>
<b>A{i+1}:</b> {answer}
</div>
""", unsafe_allow_html=True)
else:
st.warning("No Q&A pairs generated. Try a different page range.")
# History Tab
elif selected_tab == "History":
st.markdown("### ⏳ Question History")
if not st.session_state.history:
st.info("No questions asked yet.")
else:
for i, item in enumerate(reversed(st.session_state.history)):
with st.expander(f"Q{i+1}: {item['question']}"):
st.markdown(f"**Answer:** {item['answer']}")
st.markdown("**Source Passages:**")
for j, source in enumerate(item['sources']):
st.markdown(f"{j+1}. {source[:500]}...")
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; padding: 20px;">
Built with ❀️ for students | PDF Study Assistant v3.0
</div>
""", unsafe_allow_html=True)