sunbal7's picture
Update app.py
1c7a288 verified
raw
history blame
3.61 kB
import os
import fitz # PyMuPDF for PDF processing
import faiss
import numpy as np
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer
from groq import Groq
from dotenv import load_dotenv
# Load API key
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
client = Groq(api_key= GROQ_API_KEY)
# Load sentence transformer model for embedding
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def extract_text_from_pdf(pdf_path):
"""Extract text from a PDF file using PyMuPDF."""
doc = fitz.open(pdf_path)
text = ""
for page in doc:
text += page.get_text("text") + "\n"
return text.strip()
def extract_text_from_pdf(pdf_path):
"""Extract text from a PDF file using PyMuPDF."""
doc = fitz.open(pdf_path)
text = ""
for page in doc:
text += page.get_text("text") + "\n"
return text.strip()
def create_text_chunks(text, chunk_size=500, chunk_overlap=100):
"""Split text into chunks of specified size with overlap."""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
chunks = text_splitter.split_text(text)
return chunks
def create_faiss_index(chunks):
"""Generate embeddings for text chunks and store them in FAISS."""
embeddings = embedding_model.encode(chunks, convert_to_numpy=True)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension) # L2 (Euclidean) distance
index.add(embeddings) # Add embeddings to FAISS index
return index, embeddings, chunks
def retrieve_similar_chunks(query, index, embeddings, chunks, top_k=3):
"""Retrieve the most relevant text chunks using FAISS."""
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
distances, indices = index.search(query_embedding, top_k)
results = [chunks[idx] for idx in indices[0]]
return results
def query_groq_api(query, context):
"""Send the query along with retrieved context to Groq API."""
prompt = f"Use the following context to answer the question:\n\n{context}\n\nQuestion: {query}\nAnswer:"
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama-3.3-70b-versatile",
)
return chat_completion.choices[0].message.content
import streamlit as st
st.title("πŸ“š RAG-based PDF Query Application")
st.write("Upload a PDF and ask questions!")
# File Upload
uploaded_file = st.file_uploader("Upload PDF", type="pdf")
if uploaded_file is not None:
pdf_path = "uploaded_document.pdf"
# Save file temporarily
with open(pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
# Process the PDF
st.write("Processing PDF...")
text = extract_text_from_pdf(pdf_path)
chunks = create_text_chunks(text)
index, embeddings, chunk_texts = create_faiss_index(chunks)
st.success("PDF processed! Now you can ask questions.")
# User Query
query = st.text_input("Ask a question about the PDF:")
if st.button("Get Answer"):
if query:
# Retrieve top chunks
relevant_chunks = retrieve_similar_chunks(query, index, embeddings, chunk_texts)
context = "\n\n".join(relevant_chunks)
# Query Groq API
response = query_groq_api(query, context)
st.subheader("Answer:")
st.write(response)
else:
st.warning("Please enter a question.")