File size: 3,562 Bytes
b2b5a52
 
 
d7bc36b
 
 
b2b5a52
d7bc36b
 
 
 
 
 
 
 
b2b5a52
d7bc36b
 
 
 
b2b5a52
d7bc36b
b2b5a52
d7bc36b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b5a52
d7bc36b
 
 
 
 
588f02b
d7bc36b
b2b5a52
d7bc36b
 
 
 
 
b2b5a52
d7bc36b
 
 
 
b2b5a52
d7bc36b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b5a52
d7bc36b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pyod.models.iforest import IForest
from pyod.models.lof import LOF

def main():
    st.title("AI-Based Network Anomaly Detection (Predictive Maintenance)")
    st.markdown(
        """
        This application uses AI to detect unusual behavior in a network before it leads to failure.
        By leveraging open source models and PyOD, it predicts potential issues, enabling proactive maintenance.
        """
    )

    # Sidebar settings for model and parameters
    st.sidebar.header("Settings")
    model_choice = st.sidebar.selectbox("Select Anomaly Detection Model", ("Isolation Forest", "Local Outlier Factor"))
    contamination = st.sidebar.slider("Contamination (Expected anomaly ratio)", 0.0, 0.5, 0.1)

    uploaded_file = st.file_uploader("Upload CSV file with network data", type=["csv"])

    if uploaded_file is not None:
        data = pd.read_csv(uploaded_file)
        st.write("### Data Preview")
        st.dataframe(data.head())
    else:
        st.info("No file uploaded. Generating synthetic network data for demonstration.")
        # Generate synthetic data with features like traffic, latency, and packet_loss
        np.random.seed(42)
        n_samples = 300
        traffic = np.random.normal(100, 10, n_samples)
        latency = np.random.normal(50, 5, n_samples)
        packet_loss = np.random.normal(0.5, 0.1, n_samples)
        # Introduce anomalies by modifying a subset of data points
        anomaly_indices = np.random.choice(n_samples, size=20, replace=False)
        traffic[anomaly_indices] *= 1.5
        latency[anomaly_indices] *= 2
        packet_loss[anomaly_indices] *= 5
        
        data = pd.DataFrame({
            "traffic": traffic,
            "latency": latency,
            "packet_loss": packet_loss
        })
        st.write("### Synthetic Data")
        st.dataframe(data.head())

    # Use only numeric features for anomaly detection
    features = data.select_dtypes(include=[np.number]).columns.tolist()
    if not features:
        st.error("No numeric columns found in the data for anomaly detection.")
        return

    X = data[features].values

    # Initialize the selected model from PyOD
    if model_choice == "Isolation Forest":
        model = IForest(contamination=contamination)
    elif model_choice == "Local Outlier Factor":
        model = LOF(contamination=contamination)

    # Fit the model and predict anomalies (0: normal, 1: anomaly)
    model.fit(X)
    predictions = model.labels_
    data["anomaly"] = predictions

    st.subheader("Anomaly Detection Results")
    st.write(data.head())
    n_anomalies = np.sum(predictions)
    st.write(f"Detected **{n_anomalies}** anomalies out of **{len(data)}** data points.")

    # Visualization (if at least 2 numeric features are available)
    if len(features) >= 2:
        st.subheader("Visualization")
        fig, ax = plt.subplots()
        # Plot using the first two numeric features
        x_feature = features[0]
        y_feature = features[1]
        normal_data = data[data["anomaly"] == 0]
        anomaly_data = data[data["anomaly"] == 1]
        ax.scatter(normal_data[x_feature], normal_data[y_feature], label="Normal", color="blue", alpha=0.5)
        ax.scatter(anomaly_data[x_feature], anomaly_data[y_feature], label="Anomaly", color="red", marker="x")
        ax.set_xlabel(x_feature)
        ax.set_ylabel(y_feature)
        ax.legend()
        st.pyplot(fig)

if __name__ == "__main__":
    main()