File size: 5,150 Bytes
e43d2e0
 
 
 
 
 
 
 
 
 
 
1015b9c
 
e43d2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaab6d6
 
e43d2e0
 
 
a745fd3
e43d2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ef0b3
ccbaa05
 
 
d4ef0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbaa05
d4ef0b3
 
ccbaa05
 
 
 
e43d2e0
d4ef0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8f7f9f
0ab436f
d4ef0b3
 
e43d2e0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import os
from importlib import import_module

import gradio as gr
from tqdm import tqdm
import models.TextCNN
import torch
import pickle as pkl
from utils import build_dataset

classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类',
           '娱乐类']

MAX_VOCAB_SIZE = 10000  # 词表长度限制
UNK, PAD = '<UNK>', '<PAD>'  # 未知字,padding符号


def build_vocab(file_path, tokenizer, max_size, min_freq):
    vocab_dic = {}
    with open(file_path, 'r', encoding='UTF-8') as f:
        for line in tqdm(f):
            lin = line.strip()
            if not lin:
                continue
            content = lin.split('\t')[0]
            for word in tokenizer(content):
                vocab_dic[word] = vocab_dic.get(word, 0) + 1
        vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
                     :max_size]
        vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
        vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
    return vocab_dic






def greet(text):
    parser = argparse.ArgumentParser(description='Chinese Text Classification')
    parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
    args = parser.parse_args()
    model_name = 'TextCNN'
    dataset = 'THUCNews'  # 数据集
    embedding = 'embedding_SougouNews.npz'
    x = import_module('models.' + model_name)

    config = x.Config(dataset, embedding)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model = models.TextCNN.Model(config)

    # vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
    model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
    model.to(device)
    model.eval()

    tokenizer = lambda x: [y for y in x]  # char-level
    if os.path.exists(config.vocab_path):
        vocab = pkl.load(open(config.vocab_path, 'rb'))
    else:
        vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
        pkl.dump(vocab, open(config.vocab_path, 'wb'))
    # print(f"Vocab size: {len(vocab)}")

    # content='时评:“国学小天才”录取缘何少佳话'
    content = text

    words_line = []
    token = tokenizer(content)
    seq_len = len(token)
    pad_size = 32
    contents = []

    if pad_size:
        if len(token) < pad_size:
            token.extend([PAD] * (pad_size - len(token)))
        else:
            token = token[:pad_size]
            seq_len = pad_size
    # word to id
    for word in token:
        words_line.append(vocab.get(word, vocab.get(UNK)))

    contents.append((words_line, seq_len))
    # print(words_line)
    # input = torch.LongTensor(words_line).unsqueeze(1).to(device)  # convert words_line to LongTensor and add batch dimension
    x = torch.LongTensor([_[0] for _ in contents]).to(device)

    # pad前的长度(超过pad_size的设为pad_size)
    seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
    input = (x, seq_len)
    # print(input)
    with torch.no_grad():
        output = model(input)
        predic = torch.max(output.data, 1)[1].cpu().numpy()
    # print(predic)
    # print('类别为:{}'.format(classes[predic[0]]))
    return classes[predic[0]]

css = """
body {
    background-color: #f6f6f6;
    font-family:Arial, sans-serif;
}

.gradio-interface {
    padding-top: 2rem;
}

.gradio-interface-header-logo {
    display: flex;
    align-items: center;
}

.gradio-interface-header-logo img {
    height: 3rem;
    margin-right: 1rem;
}

.gradio-interface-header-title {
    font-size: 2rem;
    font-weight: bold;
    margin: 0;
}

.gradio-interface-inputs label {
    font-weight: bold;
}

.gradio-interface-inputs gr-input input[type="text"], .gradio-interface-inputs gr-output textarea {
    border: 1px solid #ccc;
    border-radius: 0.25rem;
    padding: 0.5rem;
    font-size: 1rem;
    width: 100%;
    margin-bottom: 1rem;
    resize: none;
    height: 6rem;
}

.gradio-interface-outputs gr-output div {
    border: 1px solid #ccc;
    border-radius: 0.25rem;
    padding: 0.5rem;
    font-size: 1rem;
    width: 100%;
    margin-bottom: 1rem;
    min-height: 6rem;
}

.gradio-interface-footer {
    margin-top: 2rem;
}

.gradio-interface-footer .btn-primary {
    background-color: #1abc9c;
    border-color: #1abc9c;
    color: #ffffff;
}

.gradio-interface-header-icon {
    font-size: 2rem;
    margin-right: 1rem;
}

.gradio-interface-footer-icon {
    font-size: 2rem;
    margin-left: 1rem;
}

.gradio-interface-header-icon.emoji-icon {
    display: none;
}

.gradio-interface-header-icon.fa-icon {
    display: inline-block;
    font-family: 'Font Awesome 5 Free';
    font-weight: 900;
}

.gradio-interface-header-icon.fa-icon:before {
    content: '\f007';
}
"""
demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app", 
                     icon="&#x1F60E;", css=css+"?v=1")
demo.launch()