Spaces:
Runtime error
Runtime error
# import argparse | |
# import os | |
# from importlib import import_module | |
# import gradio as gr | |
# from tqdm import tqdm | |
# import models.TextCNN | |
# import torch | |
# import pickle as pkl | |
# from utils import build_dataset | |
# classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', | |
# '娱乐类'] | |
# MAX_VOCAB_SIZE = 10000 # 词表长度限制 | |
# UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号 | |
# def build_vocab(file_path, tokenizer, max_size, min_freq): | |
# vocab_dic = {} | |
# with open(file_path, 'r', encoding='UTF-8') as f: | |
# for line in tqdm(f): | |
# lin = line.strip() | |
# if not lin: | |
# continue | |
# content = lin.split('\t')[0] | |
# for word in tokenizer(content): | |
# vocab_dic[word] = vocab_dic.get(word, 0) + 1 | |
# vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[ | |
# :max_size] | |
# vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)} | |
# vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1}) | |
# return vocab_dic | |
# def greet(text): | |
# parser = argparse.ArgumentParser(description='Chinese Text Classification') | |
# parser.add_argument('--word', default=False, type=bool, help='True for word, False for char') | |
# args = parser.parse_args() | |
# model_name = 'TextCNN' | |
# dataset = 'THUCNews' # 数据集 | |
# embedding = 'embedding_SougouNews.npz' | |
# x = import_module('models.' + model_name) | |
# config = x.Config(dataset, embedding) | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# model = models.TextCNN.Model(config) | |
# # vocab, train_data, dev_data, test_data = build_dataset(config, args.word) | |
# model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu'))) | |
# model.to(device) | |
# model.eval() | |
# tokenizer = lambda x: [y for y in x] # char-level | |
# if os.path.exists(config.vocab_path): | |
# vocab = pkl.load(open(config.vocab_path, 'rb')) | |
# else: | |
# vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) | |
# pkl.dump(vocab, open(config.vocab_path, 'wb')) | |
# # print(f"Vocab size: {len(vocab)}") | |
# # content='时评:“国学小天才”录取缘何少佳话' | |
# content = text | |
# words_line = [] | |
# token = tokenizer(content) | |
# seq_len = len(token) | |
# pad_size = 32 | |
# contents = [] | |
# if pad_size: | |
# if len(token) < pad_size: | |
# token.extend([PAD] * (pad_size - len(token))) | |
# else: | |
# token = token[:pad_size] | |
# seq_len = pad_size | |
# # word to id | |
# for word in token: | |
# words_line.append(vocab.get(word, vocab.get(UNK))) | |
# contents.append((words_line, seq_len)) | |
# # print(words_line) | |
# # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension | |
# x = torch.LongTensor([_[0] for _ in contents]).to(device) | |
# # pad前的长度(超过pad_size的设为pad_size) | |
# seq_len = torch.LongTensor([_[1] for _ in contents]).to(device) | |
# input = (x, seq_len) | |
# # print(input) | |
# with torch.no_grad(): | |
# output = model(input) | |
# predic = torch.max(output.data, 1)[1].cpu().numpy() | |
# # print(predic) | |
# # print('类别为:{}'.format(classes[predic[0]])) | |
# return classes[predic[0]] | |
# demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app", | |
# layout="vertical", description="This is a demo for text classification.") | |
# demo.launch() | |
#你可以使用 CSS 和 HTML 来自定义你的 Gradio 界面,以使其更具吸引力。以下是一个示例,其中使用了一些 CSS 样式和 HTML 标记来改进界面布局和风格: | |
import argparse | |
import os | |
from importlib import import_module | |
import gradio as gr | |
import models.TextCNN | |
import torch | |
import pickle as pkl | |
from tqdm import tqdm | |
classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', '娱乐类'] | |
MAX_VOCAB_SIZE = 10000 # 词表长度限制 | |
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号 | |
def build_vocab(file_path, tokenizer, max_size, min_freq): | |
vocab_dic = {} | |
with open(file_path, 'r', encoding='UTF-8') as f: | |
for line in tqdm(f): | |
lin = line.strip() | |
if not lin: | |
continue | |
content = lin.split('\t')[0] | |
for word in tokenizer(content): | |
vocab_dic[word] = vocab_dic.get(word, 0) + 1 | |
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[ | |
:max_size] | |
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)} | |
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1}) | |
return vocab_dic | |
def greet(text): | |
parser = argparse.ArgumentParser(description='Chinese Text Classification') | |
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char') | |
args = parser.parse_args() | |
model_name = 'TextCNN' | |
dataset = 'THUCNews' # 数据集 | |
embedding = 'embedding_SougouNews.npz' | |
x = import_module('models.' + model_name) | |
config = x.Config(dataset, embedding) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = models.TextCNN.Model(config) | |
# vocab, train_data, dev_data, test_data = build_dataset(config, args.word) | |
model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu'))) | |
model.to(device) | |
model.eval() | |
tokenizer = lambda x: [y for y in x] # char-level | |
if os.path.exists(config.vocab_path): | |
vocab = pkl.load(open(config.vocab_path, 'rb')) | |
else: | |
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) | |
pkl.dump(vocab, open(config.vocab_path, 'wb')) | |
# print(f"Vocab size: {len(vocab)}") | |
# content='时评:“国学小天才”录取缘何少佳话' | |
content = text | |
words_line = [] | |
token = tokenizer(content) | |
seq_len = len(token) | |
pad_size = 32 | |
contents = [] | |
if pad_size: | |
if len(token) < pad_size: | |
token.extend([PAD] * (pad_size - len(token))) | |
else: | |
token = token[:pad_size] | |
seq_len = pad_size | |
# word to id | |
for word in token: | |
words_line.append(vocab.get(word, vocab.get(UNK))) | |
contents.append((words_line, seq_len)) | |
# print(words_line) | |
# input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension | |
x = torch.LongTensor([_[0] for _ in contents]).to(device) | |
# pad前的长度(超过pad_size的设为pad_size) | |
seq_len = torch.LongTensor([_[1] for _ in contents]).to(device) | |
input = (x, seq_len) | |
# print(input) | |
with torch.no_grad(): | |
output = model(input) | |
predic = torch.max(output.data, 1)[1].cpu().numpy() | |
# print(predic) | |
# print('类别为:{}'.format(classes[predic[0]])) | |
return classes[predic[0]] | |
# 自定义样式和布局 | |
css = """ | |
body { | |
background-color: #f8f8f8; | |
font-family: Arial, sans-serif; | |
} | |
.container { | |
max-width: 800px; | |
margin: 0 auto; | |
padding: 50px; | |
} | |
h1 { | |
font-size: 36px; | |
font-weight: bold; | |
color: #333333; | |
text-align: center; | |
margin-bottom: 50px; | |
} | |
.gradio-interface { | |
border: none; | |
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); | |
border-radius: 10px; | |
overflow: hidden; | |
margin-bottom: 50px; | |
} | |
.gradio-input { | |
background-color: #ffffff; | |
border: none; | |
border-radius: 5px; | |
padding: 15px; | |
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); | |
font-size: 18px; | |
color: #333333; | |
width: 100%; | |
margin-bottom: 20px; | |
} | |
.gradio-output { | |
background-color: #ffffff; | |
border: none; | |
border-radius: 5px; | |
padding: 15px; | |
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1); | |
font-size: 18px; | |
color: #333333; | |
width: 100%; | |
margin-bottom: 20px; | |
} | |
.gradio-interface:hover { | |
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2); | |
} | |
.gradio-interface:focus-within { | |
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2); | |
} | |
.gradio-interface .input-group { | |
margin-bottom: 20px; | |
} | |
.gradio-interface .input-label { | |
font-size: 24px; | |
font-weight: bold; | |
color: #333333; | |
margin-bottom: 10px; | |
} | |
.gradio-interface .input-description { | |
font-size: 16px; | |
color: #666666; | |
margin-bottom: 20px; | |
} | |
.gradio-interface .output-label { | |
font-size: 24px; | |
font-weight: bold; | |
color: #333333; | |
margin-bottom: 10px; | |
} | |
.gradio-interface .output-description { | |
font-size: 16px; | |
color: #666666; | |
margin-bottom: 20px; | |
} | |
.gradio-interface .input-group input[type="text"]::placeholder { | |
color: #999999; | |
} | |
.gradio-button { | |
background-color: #333333; | |
color: #ffffff; | |
border: none; | |
border-radius: 5px; | |
padding: 15px 30px; | |
font-size: 18px; | |
font-weight: bold; | |
cursor: pointer; | |
transition: background-color 0.2s ease; | |
} | |
.gradio-button:hover { | |
background-color: #111111; | |
} | |
""" | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="Text Classification App", | |
description="This is a demo for text classification.", css=css, | |
examples=[["今天天气真好"], ["这个手机真不错"], ["新冠疫情对经济的影响"]]) | |
iface.launch() | |