sundea's picture
Update app.py
5f6b17a
raw
history blame
9.81 kB
# import argparse
# import os
# from importlib import import_module
# import gradio as gr
# from tqdm import tqdm
# import models.TextCNN
# import torch
# import pickle as pkl
# from utils import build_dataset
# classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类',
# '娱乐类']
# MAX_VOCAB_SIZE = 10000 # 词表长度限制
# UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
# def build_vocab(file_path, tokenizer, max_size, min_freq):
# vocab_dic = {}
# with open(file_path, 'r', encoding='UTF-8') as f:
# for line in tqdm(f):
# lin = line.strip()
# if not lin:
# continue
# content = lin.split('\t')[0]
# for word in tokenizer(content):
# vocab_dic[word] = vocab_dic.get(word, 0) + 1
# vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
# :max_size]
# vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
# vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
# return vocab_dic
# def greet(text):
# parser = argparse.ArgumentParser(description='Chinese Text Classification')
# parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
# args = parser.parse_args()
# model_name = 'TextCNN'
# dataset = 'THUCNews' # 数据集
# embedding = 'embedding_SougouNews.npz'
# x = import_module('models.' + model_name)
# config = x.Config(dataset, embedding)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = models.TextCNN.Model(config)
# # vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
# model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
# model.to(device)
# model.eval()
# tokenizer = lambda x: [y for y in x] # char-level
# if os.path.exists(config.vocab_path):
# vocab = pkl.load(open(config.vocab_path, 'rb'))
# else:
# vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
# pkl.dump(vocab, open(config.vocab_path, 'wb'))
# # print(f"Vocab size: {len(vocab)}")
# # content='时评:“国学小天才”录取缘何少佳话'
# content = text
# words_line = []
# token = tokenizer(content)
# seq_len = len(token)
# pad_size = 32
# contents = []
# if pad_size:
# if len(token) < pad_size:
# token.extend([PAD] * (pad_size - len(token)))
# else:
# token = token[:pad_size]
# seq_len = pad_size
# # word to id
# for word in token:
# words_line.append(vocab.get(word, vocab.get(UNK)))
# contents.append((words_line, seq_len))
# # print(words_line)
# # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
# x = torch.LongTensor([_[0] for _ in contents]).to(device)
# # pad前的长度(超过pad_size的设为pad_size)
# seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
# input = (x, seq_len)
# # print(input)
# with torch.no_grad():
# output = model(input)
# predic = torch.max(output.data, 1)[1].cpu().numpy()
# # print(predic)
# # print('类别为:{}'.format(classes[predic[0]]))
# return classes[predic[0]]
# demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app",
# layout="vertical", description="This is a demo for text classification.")
# demo.launch()
#你可以使用 CSS 和 HTML 来自定义你的 Gradio 界面,以使其更具吸引力。以下是一个示例,其中使用了一些 CSS 样式和 HTML 标记来改进界面布局和风格:
import argparse
import os
from importlib import import_module
import gradio as gr
import models.TextCNN
import torch
import pickle as pkl
from tqdm import tqdm
classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', '娱乐类']
MAX_VOCAB_SIZE = 10000 # 词表长度限制
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
def build_vocab(file_path, tokenizer, max_size, min_freq):
vocab_dic = {}
with open(file_path, 'r', encoding='UTF-8') as f:
for line in tqdm(f):
lin = line.strip()
if not lin:
continue
content = lin.split('\t')[0]
for word in tokenizer(content):
vocab_dic[word] = vocab_dic.get(word, 0) + 1
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
:max_size]
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
return vocab_dic
def greet(text):
parser = argparse.ArgumentParser(description='Chinese Text Classification')
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
args = parser.parse_args()
model_name = 'TextCNN'
dataset = 'THUCNews' # 数据集
embedding = 'embedding_SougouNews.npz'
x = import_module('models.' + model_name)
config = x.Config(dataset, embedding)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.TextCNN.Model(config)
# vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
model.to(device)
model.eval()
tokenizer = lambda x: [y for y in x] # char-level
if os.path.exists(config.vocab_path):
vocab = pkl.load(open(config.vocab_path, 'rb'))
else:
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(vocab, open(config.vocab_path, 'wb'))
# print(f"Vocab size: {len(vocab)}")
# content='时评:“国学小天才”录取缘何少佳话'
content = text
words_line = []
token = tokenizer(content)
seq_len = len(token)
pad_size = 32
contents = []
if pad_size:
if len(token) < pad_size:
token.extend([PAD] * (pad_size - len(token)))
else:
token = token[:pad_size]
seq_len = pad_size
# word to id
for word in token:
words_line.append(vocab.get(word, vocab.get(UNK)))
contents.append((words_line, seq_len))
# print(words_line)
# input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
x = torch.LongTensor([_[0] for _ in contents]).to(device)
# pad前的长度(超过pad_size的设为pad_size)
seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
input = (x, seq_len)
# print(input)
with torch.no_grad():
output = model(input)
predic = torch.max(output.data, 1)[1].cpu().numpy()
# print(predic)
# print('类别为:{}'.format(classes[predic[0]]))
return classes[predic[0]]
# 自定义样式和布局
css = """
body {
background-color: #f8f8f8;
font-family: Arial, sans-serif;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 50px;
}
h1 {
font-size: 36px;
font-weight: bold;
color: #333333;
text-align: center;
margin-bottom: 50px;
}
.gradio-interface {
border: none;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
border-radius: 10px;
overflow: hidden;
margin-bottom: 50px;
}
.gradio-input {
background-color: #ffffff;
border: none;
border-radius: 5px;
padding: 15px;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
font-size: 18px;
color: #333333;
width: 100%;
margin-bottom: 20px;
}
.gradio-output {
background-color: #ffffff;
border: none;
border-radius: 5px;
padding: 15px;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
font-size: 18px;
color: #333333;
width: 100%;
margin-bottom: 20px;
}
.gradio-interface:hover {
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
}
.gradio-interface:focus-within {
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
}
.gradio-interface .input-group {
margin-bottom: 20px;
}
.gradio-interface .input-label {
font-size: 24px;
font-weight: bold;
color: #333333;
margin-bottom: 10px;
}
.gradio-interface .input-description {
font-size: 16px;
color: #666666;
margin-bottom: 20px;
}
.gradio-interface .output-label {
font-size: 24px;
font-weight: bold;
color: #333333;
margin-bottom: 10px;
}
.gradio-interface .output-description {
font-size: 16px;
color: #666666;
margin-bottom: 20px;
}
.gradio-interface .input-group input[type="text"]::placeholder {
color: #999999;
}
.gradio-button {
background-color: #333333;
color: #ffffff;
border: none;
border-radius: 5px;
padding: 15px 30px;
font-size: 18px;
font-weight: bold;
cursor: pointer;
transition: background-color 0.2s ease;
}
.gradio-button:hover {
background-color: #111111;
}
"""
iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="Text Classification App",
description="This is a demo for text classification.", css=css,
examples=[["今天天气真好"], ["这个手机真不错"], ["新冠疫情对经济的影响"]])
iface.launch()