Spaces:
Runtime error
Runtime error
File size: 9,808 Bytes
ef16cf3 e43d2e0 ef16cf3 e43d2e0 ef16cf3 e43d2e0 eaab6d6 e43d2e0 a745fd3 e43d2e0 d4ef0b3 ef16cf3 4d78ff4 ef16cf3 829f01c ef16cf3 829f01c ef16cf3 f71e499 ef16cf3 5f6b17a ef16cf3 d4ef0b3 5f6b17a e43d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# import argparse
# import os
# from importlib import import_module
# import gradio as gr
# from tqdm import tqdm
# import models.TextCNN
# import torch
# import pickle as pkl
# from utils import build_dataset
# classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类',
# '娱乐类']
# MAX_VOCAB_SIZE = 10000 # 词表长度限制
# UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
# def build_vocab(file_path, tokenizer, max_size, min_freq):
# vocab_dic = {}
# with open(file_path, 'r', encoding='UTF-8') as f:
# for line in tqdm(f):
# lin = line.strip()
# if not lin:
# continue
# content = lin.split('\t')[0]
# for word in tokenizer(content):
# vocab_dic[word] = vocab_dic.get(word, 0) + 1
# vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
# :max_size]
# vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
# vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
# return vocab_dic
# def greet(text):
# parser = argparse.ArgumentParser(description='Chinese Text Classification')
# parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
# args = parser.parse_args()
# model_name = 'TextCNN'
# dataset = 'THUCNews' # 数据集
# embedding = 'embedding_SougouNews.npz'
# x = import_module('models.' + model_name)
# config = x.Config(dataset, embedding)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = models.TextCNN.Model(config)
# # vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
# model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
# model.to(device)
# model.eval()
# tokenizer = lambda x: [y for y in x] # char-level
# if os.path.exists(config.vocab_path):
# vocab = pkl.load(open(config.vocab_path, 'rb'))
# else:
# vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
# pkl.dump(vocab, open(config.vocab_path, 'wb'))
# # print(f"Vocab size: {len(vocab)}")
# # content='时评:“国学小天才”录取缘何少佳话'
# content = text
# words_line = []
# token = tokenizer(content)
# seq_len = len(token)
# pad_size = 32
# contents = []
# if pad_size:
# if len(token) < pad_size:
# token.extend([PAD] * (pad_size - len(token)))
# else:
# token = token[:pad_size]
# seq_len = pad_size
# # word to id
# for word in token:
# words_line.append(vocab.get(word, vocab.get(UNK)))
# contents.append((words_line, seq_len))
# # print(words_line)
# # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
# x = torch.LongTensor([_[0] for _ in contents]).to(device)
# # pad前的长度(超过pad_size的设为pad_size)
# seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
# input = (x, seq_len)
# # print(input)
# with torch.no_grad():
# output = model(input)
# predic = torch.max(output.data, 1)[1].cpu().numpy()
# # print(predic)
# # print('类别为:{}'.format(classes[predic[0]]))
# return classes[predic[0]]
# demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app",
# layout="vertical", description="This is a demo for text classification.")
# demo.launch()
#你可以使用 CSS 和 HTML 来自定义你的 Gradio 界面,以使其更具吸引力。以下是一个示例,其中使用了一些 CSS 样式和 HTML 标记来改进界面布局和风格:
import argparse
import os
from importlib import import_module
import gradio as gr
import models.TextCNN
import torch
import pickle as pkl
from tqdm import tqdm
classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', '娱乐类']
MAX_VOCAB_SIZE = 10000 # 词表长度限制
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
def build_vocab(file_path, tokenizer, max_size, min_freq):
vocab_dic = {}
with open(file_path, 'r', encoding='UTF-8') as f:
for line in tqdm(f):
lin = line.strip()
if not lin:
continue
content = lin.split('\t')[0]
for word in tokenizer(content):
vocab_dic[word] = vocab_dic.get(word, 0) + 1
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
:max_size]
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
return vocab_dic
def greet(text):
parser = argparse.ArgumentParser(description='Chinese Text Classification')
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
args = parser.parse_args()
model_name = 'TextCNN'
dataset = 'THUCNews' # 数据集
embedding = 'embedding_SougouNews.npz'
x = import_module('models.' + model_name)
config = x.Config(dataset, embedding)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.TextCNN.Model(config)
# vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
model.to(device)
model.eval()
tokenizer = lambda x: [y for y in x] # char-level
if os.path.exists(config.vocab_path):
vocab = pkl.load(open(config.vocab_path, 'rb'))
else:
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(vocab, open(config.vocab_path, 'wb'))
# print(f"Vocab size: {len(vocab)}")
# content='时评:“国学小天才”录取缘何少佳话'
content = text
words_line = []
token = tokenizer(content)
seq_len = len(token)
pad_size = 32
contents = []
if pad_size:
if len(token) < pad_size:
token.extend([PAD] * (pad_size - len(token)))
else:
token = token[:pad_size]
seq_len = pad_size
# word to id
for word in token:
words_line.append(vocab.get(word, vocab.get(UNK)))
contents.append((words_line, seq_len))
# print(words_line)
# input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
x = torch.LongTensor([_[0] for _ in contents]).to(device)
# pad前的长度(超过pad_size的设为pad_size)
seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
input = (x, seq_len)
# print(input)
with torch.no_grad():
output = model(input)
predic = torch.max(output.data, 1)[1].cpu().numpy()
# print(predic)
# print('类别为:{}'.format(classes[predic[0]]))
return classes[predic[0]]
# 自定义样式和布局
css = """
body {
background-color: #f8f8f8;
font-family: Arial, sans-serif;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 50px;
}
h1 {
font-size: 36px;
font-weight: bold;
color: #333333;
text-align: center;
margin-bottom: 50px;
}
.gradio-interface {
border: none;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
border-radius: 10px;
overflow: hidden;
margin-bottom: 50px;
}
.gradio-input {
background-color: #ffffff;
border: none;
border-radius: 5px;
padding: 15px;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
font-size: 18px;
color: #333333;
width: 100%;
margin-bottom: 20px;
}
.gradio-output {
background-color: #ffffff;
border: none;
border-radius: 5px;
padding: 15px;
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
font-size: 18px;
color: #333333;
width: 100%;
margin-bottom: 20px;
}
.gradio-interface:hover {
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
}
.gradio-interface:focus-within {
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
}
.gradio-interface .input-group {
margin-bottom: 20px;
}
.gradio-interface .input-label {
font-size: 24px;
font-weight: bold;
color: #333333;
margin-bottom: 10px;
}
.gradio-interface .input-description {
font-size: 16px;
color: #666666;
margin-bottom: 20px;
}
.gradio-interface .output-label {
font-size: 24px;
font-weight: bold;
color: #333333;
margin-bottom: 10px;
}
.gradio-interface .output-description {
font-size: 16px;
color: #666666;
margin-bottom: 20px;
}
.gradio-interface .input-group input[type="text"]::placeholder {
color: #999999;
}
.gradio-button {
background-color: #333333;
color: #ffffff;
border: none;
border-radius: 5px;
padding: 15px 30px;
font-size: 18px;
font-weight: bold;
cursor: pointer;
transition: background-color 0.2s ease;
}
.gradio-button:hover {
background-color: #111111;
}
"""
iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="Text Classification App",
description="This is a demo for text classification.", css=css,
examples=[["今天天气真好"], ["这个手机真不错"], ["新冠疫情对经济的影响"]])
iface.launch()
|