File size: 9,808 Bytes
ef16cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e43d2e0
 
 
 
 
 
 
 
ef16cf3
e43d2e0
ef16cf3
e43d2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaab6d6
 
e43d2e0
 
 
a745fd3
e43d2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ef0b3
ef16cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d78ff4
ef16cf3
 
 
829f01c
ef16cf3
 
 
 
 
 
 
 
 
 
 
829f01c
ef16cf3
 
 
 
f71e499
ef16cf3
5f6b17a
 
ef16cf3
d4ef0b3
5f6b17a
e43d2e0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# import argparse
# import os
# from importlib import import_module

# import gradio as gr
# from tqdm import tqdm
# import models.TextCNN
# import torch
# import pickle as pkl
# from utils import build_dataset

# classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类',
#            '娱乐类']

# MAX_VOCAB_SIZE = 10000  # 词表长度限制
# UNK, PAD = '<UNK>', '<PAD>'  # 未知字,padding符号


# def build_vocab(file_path, tokenizer, max_size, min_freq):
#     vocab_dic = {}
#     with open(file_path, 'r', encoding='UTF-8') as f:
#         for line in tqdm(f):
#             lin = line.strip()
#             if not lin:
#                 continue
#             content = lin.split('\t')[0]
#             for word in tokenizer(content):
#                 vocab_dic[word] = vocab_dic.get(word, 0) + 1
#         vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
#                      :max_size]
#         vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
#         vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
#     return vocab_dic








# def greet(text):
#     parser = argparse.ArgumentParser(description='Chinese Text Classification')
#     parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
#     args = parser.parse_args()
#     model_name = 'TextCNN'
#     dataset = 'THUCNews'  # 数据集
#     embedding = 'embedding_SougouNews.npz'
#     x = import_module('models.' + model_name)

#     config = x.Config(dataset, embedding)
#     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

#     model = models.TextCNN.Model(config)

#     # vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
#     model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
#     model.to(device)
#     model.eval()

#     tokenizer = lambda x: [y for y in x]  # char-level
#     if os.path.exists(config.vocab_path):
#         vocab = pkl.load(open(config.vocab_path, 'rb'))
#     else:
#         vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
#         pkl.dump(vocab, open(config.vocab_path, 'wb'))
#     # print(f"Vocab size: {len(vocab)}")

#     # content='时评:“国学小天才”录取缘何少佳话'
#     content = text

#     words_line = []
#     token = tokenizer(content)
#     seq_len = len(token)
#     pad_size = 32
#     contents = []

#     if pad_size:
#         if len(token) < pad_size:
#             token.extend([PAD] * (pad_size - len(token)))
#         else:
#             token = token[:pad_size]
#             seq_len = pad_size
#     # word to id
#     for word in token:
#         words_line.append(vocab.get(word, vocab.get(UNK)))

#     contents.append((words_line, seq_len))
#     # print(words_line)
#     # input = torch.LongTensor(words_line).unsqueeze(1).to(device)  # convert words_line to LongTensor and add batch dimension
#     x = torch.LongTensor([_[0] for _ in contents]).to(device)

#     # pad前的长度(超过pad_size的设为pad_size)
#     seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
#     input = (x, seq_len)
#     # print(input)
#     with torch.no_grad():
#         output = model(input)
#         predic = torch.max(output.data, 1)[1].cpu().numpy()
#     # print(predic)
#     # print('类别为:{}'.format(classes[predic[0]]))
#     return classes[predic[0]]





# demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app", 
#                      layout="vertical", description="This is a demo for text classification.")
# demo.launch()

#你可以使用 CSS 和 HTML 来自定义你的 Gradio 界面,以使其更具吸引力。以下是一个示例,其中使用了一些 CSS 样式和 HTML 标记来改进界面布局和风格:


import argparse
import os
from importlib import import_module

import gradio as gr
import models.TextCNN
import torch
import pickle as pkl
from tqdm import tqdm

classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', '娱乐类']

MAX_VOCAB_SIZE = 10000  # 词表长度限制
UNK, PAD = '<UNK>', '<PAD>'  # 未知字,padding符号


def build_vocab(file_path, tokenizer, max_size, min_freq):
    vocab_dic = {}
    with open(file_path, 'r', encoding='UTF-8') as f:
        for line in tqdm(f):
            lin = line.strip()
            if not lin:
                continue
            content = lin.split('\t')[0]
            for word in tokenizer(content):
                vocab_dic[word] = vocab_dic.get(word, 0) + 1
        vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[
                     :max_size]
        vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
        vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
    return vocab_dic


def greet(text):
    parser = argparse.ArgumentParser(description='Chinese Text Classification')
    parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
    args = parser.parse_args()
    model_name = 'TextCNN'
    dataset = 'THUCNews'  # 数据集
    embedding = 'embedding_SougouNews.npz'
    x = import_module('models.' + model_name)

    config = x.Config(dataset, embedding)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model = models.TextCNN.Model(config)

    # vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
    model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu')))
    model.to(device)
    model.eval()

    tokenizer = lambda x: [y for y in x]  # char-level
    if os.path.exists(config.vocab_path):
        vocab = pkl.load(open(config.vocab_path, 'rb'))
    else:
        vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
        pkl.dump(vocab, open(config.vocab_path, 'wb'))
    # print(f"Vocab size: {len(vocab)}")

    # content='时评:“国学小天才”录取缘何少佳话'
    content = text

    words_line = []
    token = tokenizer(content)
    seq_len = len(token)
    pad_size = 32
    contents = []

    if pad_size:
        if len(token) < pad_size:
            token.extend([PAD] * (pad_size - len(token)))
        else:
            token = token[:pad_size]
            seq_len = pad_size
    # word to id
    for word in token:
        words_line.append(vocab.get(word, vocab.get(UNK)))

    contents.append((words_line, seq_len))
    # print(words_line)
    # input = torch.LongTensor(words_line).unsqueeze(1).to(device)  # convert words_line to LongTensor and add batch dimension
    x = torch.LongTensor([_[0] for _ in contents]).to(device)

    # pad前的长度(超过pad_size的设为pad_size)
    seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
    input = (x, seq_len)
    # print(input)
    with torch.no_grad():
        output = model(input)
        predic = torch.max(output.data, 1)[1].cpu().numpy()
    # print(predic)
    # print('类别为:{}'.format(classes[predic[0]]))
    return classes[predic[0]]

# 自定义样式和布局
css = """
body {
    background-color: #f8f8f8;
    font-family: Arial, sans-serif;
}

.container {
    max-width: 800px;
   margin: 0 auto;
    padding: 50px;
}

h1 {
    font-size: 36px;
    font-weight: bold;
    color: #333333;
    text-align: center;
    margin-bottom: 50px;
}

.gradio-interface {
    border: none;
    box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
    border-radius: 10px;
    overflow: hidden;
    margin-bottom: 50px;
}

.gradio-input {
    background-color: #ffffff;
    border: none;
    border-radius: 5px;
    padding: 15px;
    box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
    font-size: 18px;
    color: #333333;
    width: 100%;
    margin-bottom: 20px;
}

.gradio-output {
    background-color: #ffffff;
    border: none;
    border-radius: 5px;
    padding: 15px;
    box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
    font-size: 18px;
    color: #333333;
    width: 100%;
    margin-bottom: 20px;
}

.gradio-interface:hover {
    box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
}

.gradio-interface:focus-within {
    box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.2);
}

.gradio-interface .input-group {
    margin-bottom: 20px;
}

.gradio-interface .input-label {
    font-size: 24px;
    font-weight: bold;
    color: #333333;
    margin-bottom: 10px;
}

.gradio-interface .input-description {
    font-size: 16px;
    color: #666666;
    margin-bottom: 20px;
}

.gradio-interface .output-label {
    font-size: 24px;
    font-weight: bold;
    color: #333333;
    margin-bottom: 10px;
}

.gradio-interface .output-description {
    font-size: 16px;
    color: #666666;
    margin-bottom: 20px;
}

.gradio-interface .input-group input[type="text"]::placeholder {
    color: #999999;
}

.gradio-button {
    background-color: #333333;
    color: #ffffff;
    border: none;
    border-radius: 5px;
    padding: 15px 30px;
    font-size: 18px;
    font-weight: bold;
    cursor: pointer;
    transition: background-color 0.2s ease;
}

.gradio-button:hover {
    background-color: #111111;
}
"""

iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="Text Classification App",
                     description="This is a demo for text classification.", css=css, 
                     
                     examples=[["今天天气真好"], ["这个手机真不错"], ["新冠疫情对经济的影响"]])

iface.launch()