Spaces:
Runtime error
Runtime error
File size: 10,660 Bytes
6d06e3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_tavily import TavilySearch
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from supabase.client import Client, create_client
import re
from langchain_community.document_loaders import WikipediaLoader
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
import sympy
import wolframalpha
import sys
import requests
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
#return {"wiki_results": formatted_search_docs}
return formatted_search_docs
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearch(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
@tool
def filtered_wiki_search(query: str, start_year: int = None, end_year: int = None) -> dict:
"""Search Wikipedia for a query and filter results by year if provided."""
search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
def contains_year(text, start, end):
years = re.findall(r'\b(19\d{2}|20\d{2})\b', text)
for y in years:
y_int = int(y)
if start <= y_int <= end:
return True
return False
filtered_docs = []
for doc in search_docs:
if start_year and end_year:
if contains_year(doc.page_content, start_year, end_year):
filtered_docs.append(doc)
else:
filtered_docs.append(doc)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in filtered_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def wolfram_alpha_query(query: str) -> str:
"""Query Wolfram Alpha with the given question and return the result."""
client = wolframalpha.Client(os.environ['WOLFRAM_APP_ID'])
res = client.query(query)
try:
return next(res.results).text
except StopIteration:
return "No result found."
@tool
def youtube_transcript(url: str) -> str:
"""Fetch YouTube transcript text from a video URL."""
try:
video_id = url.split("v=")[-1].split("&")[0]
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
transcript = " ".join([segment['text'] for segment in transcript_list])
return transcript
except (TranscriptsDisabled, NoTranscriptFound):
return "Transcript not available for this video."
except Exception as e:
return f"Error fetching transcript: {str(e)}"
@tool
def solve_algebraic_expression(expression: str) -> str:
"""Solve or simplify the given algebraic expression."""
try:
expr = sympy.sympify(expression)
simplified = sympy.simplify(expr)
return str(simplified)
except Exception as e:
return f"Error solving expression: {str(e)}"
@tool
def run_python_code(code: str) -> str:
"""Execute python code and return the result of variable 'result' if defined."""
try:
local_vars = {}
exec(code, {}, local_vars)
if 'result' in local_vars:
return str(local_vars['result'])
else:
return "Code executed successfully but no 'result' variable found."
except Exception as e:
return f"Error executing code: {str(e)}"
@tool
def wikidata_query(sparql_query: str) -> str:
"""Run a SPARQL query against Wikidata and return the JSON results."""
endpoint = "https://query.wikidata.org/sparql"
headers = {"Accept": "application/sparql-results+json"}
try:
response = requests.get(endpoint, params={"query": sparql_query}, headers=headers)
response.raise_for_status()
data = response.json()
return str(data) # Or format as needed
except Exception as e:
return f"Error querying Wikidata: {str(e)}"
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"),
os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding= embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
filtered_wiki_search,
web_search,
arvix_search,
wolfram_alpha_query,
retriever_tool,
youtube_transcript,
solve_algebraic_expression,
run_python_code,
wikidata_query
]
# Build graph function
def build_graph(provider: str = "huggingface"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "openai":
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
elif provider == "anthropic":
llm = ChatAnthropic(model="claude-v1", temperature=0)
elif provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
llm = ChatHuggingFace(
llm = HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
messages_with_sys = [sys_msg] + state["messages"]
return {"messages": [llm_with_tools.invoke(messages_with_sys)]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
if not similar_question:
# No similar documents found, fallback message
example_msg = HumanMessage(
content="Sorry, I could not find any similar questions in the vector store."
)
else:
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph(provider="groq")
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
|