cloner / app.py
suprimedev's picture
Update app.py
3b0f5c1 verified
raw
history blame
6.2 kB
import gradio as gr
import librosa
import librosa.display
import numpy as np
from pydub import AudioSegment
import io
import os
# Function to convert any audio to WAV using pydub
def convert_to_wav(audio_file_path):
try:
audio = AudioSegment.from_file(audio_file_path)
wav_file_path = audio_file_path + ".wav"
audio.export(wav_file_path, format="wav")
return wav_file_path
except Exception as e:
raise gr.Error(f"Error converting audio to WAV: {e}")
# Main voice changer function (simplified)
def voice_changer(source_audio_path, target_audio_path):
if source_audio_path is None or target_audio_path is None:
raise gr.Error("Please upload both source and target audio files.")
# Ensure audio files are in WAV format
source_wav_path = convert_to_wav(source_audio_path)
target_wav_path = convert_to_wav(target_audio_path)
try:
# Load audio files
y_source, sr_source = librosa.load(source_wav_path, sr=None)
y_target, sr_target = librosa.load(target_wav_path, sr=None)
# Resample target audio to source sample rate if different
if sr_source != sr_target:
y_target = librosa.resample(y_target, orig_sr=sr_target, target_sr=sr_source)
print(f"Resampled target audio from {sr_target} to {sr_source} Hz.")
# --- Simplified Voice Transfer Logic (Melody/Rhythm Transfer) ---
# This is a very basic approach and not a full timbre transfer.
# It tries to align the dominant pitch of the target with the source.
# 1. Pitch Estimation for Source
f0_source, voiced_flag_source, voiced_probs_source = librosa.display.cqt_frequencies(n_bins=84, fmin=librosa.note_to_hz('C1')).T, None, None
try:
f0_source, _, _ = librosa.pyin(y_source, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), sr=sr_source, frame_length=2048)
except Exception as e:
print(f"Pyin failed for source, trying different params or fallback: {e}")
f0_source, _, _ = librosa.pyin(y_source, fmin=60, fmax=500, sr=sr_source, frame_length=2048) # More robust range
# 2. Estimate F0 for Target
f0_target, voiced_flag_target, voiced_probs_target = librosa.display.cqt_frequencies(n_bins=84, fmin=librosa.note_to_hz('C1')).T, None, None
try:
f0_target, _, _ = librosa.pyin(y_target, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), sr=sr_target, frame_length=2048)
except Exception as e:
print(f"Pyin failed for target, trying different params or fallback: {e}")
f0_target, _, _ = librosa.pyin(y_target, fmin=60, fmax=500, sr=sr_target, frame_length=2048) # More robust range
# Handle NaN values in f0_source (unvoiced segments)
f0_source_interpolated = np.nan_to_num(f0_source, nan=0.0)
f0_target_interpolated = np.nan_to_num(f0_target, nan=0.0)
# Calculate a simple pitch shift ratio based on mean F0
# This is very simplistic and doesn't account for variations over time.
# A more advanced approach would involve temporal alignment and mapping.
mean_f0_source = np.mean(f0_source_interpolated[f0_source_interpolated > 0])
mean_f0_target = np.mean(f0_target_interpolated[f0_target_interpolated > 0])
if mean_f0_target > 0 and mean_f0_source > 0:
pitch_shift_factor = mean_f0_source / mean_f0_target
else:
pitch_shift_factor = 1.0 # No pitch shift if no valid pitch detected
# Apply a pitch shift to the target audio
# Using a simple `librosa.effects.pitch_shift` which is based on phase vocoder.
# This is not PSOLA and can introduce artifacts.
# The `n_steps` argument is in semitones.
n_steps = 12 * np.log2(pitch_shift_factor) if pitch_shift_factor > 0 else 0
# Adjust the duration of the target audio to roughly match the source
# This is a crude time stretching/compressing
duration_ratio = len(y_source) / len(y_target)
y_target_adjusted_tempo = librosa.effects.time_stretch(y_target, rate=duration_ratio)
# Apply pitch shift to the tempo-adjusted target audio
y_output = librosa.effects.pitch_shift(y_target_adjusted_tempo, sr=sr_source, n_steps=n_steps)
# Normalize the output audio to prevent clipping
y_output = librosa.util.normalize(y_output)
# Create a temporary file to save the output audio
output_file_path = "output_voice_changed.wav"
sf.write(output_file_path, y_output, sr_source)
return output_file_path
except Exception as e:
raise gr.Error(f"An error occurred during voice processing: {e}")
finally:
# Clean up temporary WAV files
if os.path.exists(source_wav_path):
os.remove(source_wav_path)
if os.path.exists(target_wav_path):
os.remove(target_wav_path)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Simple Audio Style Transfer (Voice Changer - Experimental)
Upload two audio files. The goal is to make the "Target Audio" mimic the pitch/melody of the "Source Audio".
**Note:** This is a very basic implementation and **not a full voice cloning/timbre transfer**.
It performs a simplified pitch and tempo adjustment based on the source's characteristics.
Expect artifacts and limited "voice changing" effect. For true voice cloning, more advanced models are needed.
"""
)
with gr.Row():
source_audio_input = gr.Audio(type="filepath", label="Source Audio (Reference Voice/Style)", sources=["upload"])
target_audio_input = gr.Audio(type="filepath", label="Target Audio (Voice to be Changed)", sources=["upload"])
output_audio = gr.Audio(label="Transformed Audio")
voice_changer_button = gr.Button("Transform Voice")
voice_changer_button.click(
fn=voice_changer,
inputs=[source_audio_input, target_audio_input],
outputs=output_audio
)
if __name__ == "__main__":
import soundfile as sf # Required for sf.write
demo.launch()