svjack's picture
Upload 7 files
f774f0f
from multiprocessing import set_start_method
#set_start_method("fork")
import sys
#sys.path.insert(0, "../HR-VITON-main")
from test_generator import *
import re
import inspect
from dataclasses import dataclass, field
from tqdm import tqdm
import pandas as pd
import os
import torch
import pandas as pd
import gradio as gr
import streamlit as st
from io import BytesIO
#### pip install streamlit-image-select
from streamlit_image_select import image_select
demo_image_dir = "demo_images_dir"
assert os.path.exists(demo_image_dir)
demo_images = list(map(lambda y: os.path.join(demo_image_dir, y) ,filter(lambda x: x.endswith(".png") or x.endswith(".jpeg") or x.endswith(".jpg")
,os.listdir(demo_image_dir))))
assert demo_images
#https://github.com/jrieke/streamlit-image-select/issues/10
#.image-box {
# border: 1px solid rgba(49, 51, 63, 0.2);
# border-radius: 0.25rem;
# padding: calc(0.25rem + 1px);
# height: 10rem;
# min-width: 10rem;
#}
demo_images = list(map(lambda x: x.resize((256, 256)), map(Image.open, demo_images)))
@dataclass
class OPT:
#### ConditionGenerator
out_layer = None
warp_feature = None
#### SPADEGenerator
semantic_nc = None
fine_height = None
fine_width = None
ngf = None
num_upsampling_layers = None
norm_G = None
gen_semantic_nc = None
#### weight load
tocg_checkpoint = None
gen_checkpoint = None
cuda = False
data_list = None
datamode = None
dataroot = None
batch_size = None
shuffle = False
workers = None
clothmask_composition = None
occlusion = False
datasetting = None
opt = OPT()
opt.out_layer = "relu"
opt.warp_feature = "T1"
input1_nc = 4 # cloth + cloth-mask
nc = 13
input2_nc = nc + 3 # parse_agnostic + densepose
output_nc = nc
tocg = ConditionGenerator(opt,
input1_nc=input1_nc,
input2_nc=input2_nc, output_nc=output_nc, ngf=96, norm_layer=nn.BatchNorm2d)
#### SPADEResBlock
from network_generator import SPADEResBlock
opt.semantic_nc = 7
opt.fine_height = 1024
opt.fine_width = 768
opt.ngf = 64
opt.num_upsampling_layers = "most"
opt.norm_G = "spectralaliasinstance"
opt.gen_semantic_nc = 7
generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()
#### https://drive.google.com/open?id=1XJTCdRBOPVgVTmqzhVGFAgMm2NLkw5uQ&authuser=0
opt.tocg_checkpoint = "mtviton.pth"
#### https://drive.google.com/open?id=1T5_YDUhYSSKPC_nZMk2NeC-XXUFoYeNy&authuser=0
opt.gen_checkpoint = "gen.pth"
opt.cuda = False
load_checkpoint(tocg, opt.tocg_checkpoint,opt)
load_checkpoint_G(generator, opt.gen_checkpoint,opt)
#### def test scope
tocg.eval()
generator.eval()
opt.data_list = "test_pairs.txt"
opt.datamode = "test"
opt.dataroot = "zalando-hd-resized"
opt.batch_size = 1
opt.shuffle = False
opt.workers = 1
opt.semantic_nc = 13
test_dataset = CPDatasetTest(opt)
test_loader = CPDataLoader(opt, test_dataset)
def construct_images(img_tensors, img_names = [None]):
#for img_tensor, img_name in zip(img_tensors, img_names):
for img_tensor, img_name in zip(img_tensors, img_names):
tensor = (img_tensor.clone() + 1) * 0.5 * 255
tensor = tensor.cpu().clamp(0, 255)
try:
array = tensor.numpy().astype('uint8')
except:
array = tensor.detach().numpy().astype('uint8')
if array.shape[0] == 1:
array = array.squeeze(0)
elif array.shape[0] == 3:
array = array.swapaxes(0, 1).swapaxes(1, 2)
im = Image.fromarray(array)
return im
def single_pred_slim_func(opt, inputs, tocg = tocg, generator = generator):
gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
if opt.cuda:
gauss = gauss.cuda()
# Model
if opt.cuda:
tocg.cuda()
tocg.eval()
generator.eval()
num = 0
iter_start_time = time.time()
with torch.no_grad():
for inputs in [inputs]:
if opt.cuda :
#pose_map = inputs['pose'].cuda()
pre_clothes_mask = inputs['cloth_mask'][opt.datasetting].cuda()
#label = inputs['parse']
parse_agnostic = inputs['parse_agnostic']
agnostic = inputs['agnostic'].cuda()
clothes = inputs['cloth'][opt.datasetting].cuda() # target cloth
densepose = inputs['densepose'].cuda()
#im = inputs['image']
#input_label, input_parse_agnostic = label.cuda(), parse_agnostic.cuda()
input_parse_agnostic = parse_agnostic.cuda()
pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
else :
#pose_map = inputs['pose']
pre_clothes_mask = inputs['cloth_mask'][opt.datasetting]
#label = inputs['parse']
parse_agnostic = inputs['parse_agnostic']
agnostic = inputs['agnostic']
clothes = inputs['cloth'][opt.datasetting] # target cloth
densepose = inputs['densepose']
#im = inputs['image']
#input_label, input_parse_agnostic = label, parse_agnostic
input_parse_agnostic = parse_agnostic
pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float))
# down
#pose_map_down = F.interpolate(pose_map, size=(256, 192), mode='bilinear')
pre_clothes_mask_down = F.interpolate(pre_clothes_mask, size=(256, 192), mode='nearest')
#input_label_down = F.interpolate(input_label, size=(256, 192), mode='bilinear')
input_parse_agnostic_down = F.interpolate(input_parse_agnostic, size=(256, 192), mode='nearest')
#agnostic_down = F.interpolate(agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(clothes, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(densepose, size=(256, 192), mode='bilinear')
shape = pre_clothes_mask.shape
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(opt,input1, input2)
# warped cloth mask one hot
if opt.cuda :
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
else :
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float))
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(opt.fine_height, opt.fine_width), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.cuda :
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
else:
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
if opt.cuda :
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
else:
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
# warped cloth
N, _, iH, iW = clothes.shape
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW,opt)
warped_grid = grid + flow_norm
warped_cloth = F.grid_sample(clothes, warped_grid, padding_mode='border')
warped_clothmask = F.grid_sample(pre_clothes_mask, warped_grid, padding_mode='border')
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth = warped_cloth * warped_clothmask + torch.ones_like(warped_cloth) * (1-warped_clothmask)
output = generator(torch.cat((agnostic, densepose, warped_cloth), dim=1), parse)
# save output
return output
#save_images(output, unpaired_names, output_dir)
#num += shape[0]
#print(num)
opt.clothmask_composition = "warp_grad"
opt.occlusion = False
opt.datasetting = "unpaired"
def read_img_and_trans(dataset ,opt ,img_path):
if type(img_path) in [type("")]:
im = Image.open(img_path)
else:
im = img_path
im = transforms.Resize(opt.fine_width, interpolation=2)(im)
im = dataset.transform(im)
return im
import sys
sys.path.insert(0, "fashion-eye-try-on")
import os
from PIL import Image
import gradio as gr
from cloth_segmentation import generate_cloth_mask
def generate_cloth_mask_and_display(cloth_img):
path = 'fashion-eye-try-on/cloth/cloth.jpg'
if os.path.exists(path):
os.remove(path)
cloth_img.save(path)
try:
# os.system('.\cloth_segmentation\generate_cloth_mask.py')
generate_cloth_mask()
except Exception as e:
print(e)
return
cloth_mask_img = Image.open("fashion-eye-try-on/cloth_mask/cloth.jpg")
return cloth_mask_img
def take_human_feature_from_dataset(dataset, idx):
inputs_upper = list(torch.utils.data.DataLoader(
[dataset[idx]], batch_size=1))[0]
return {
"parse_agnostic": inputs_upper["parse_agnostic"],
"agnostic": inputs_upper["agnostic"],
"densepose": inputs_upper["densepose"],
}
def take_all_feature_with_dataset(cloth_img_path, idx, opt = opt, dataset = test_dataset, only_show_human = False):
if type(cloth_img_path) != type(""):
assert hasattr(cloth_img_path, "save")
cloth_img_path.save("tmp_cloth.jpg")
cloth_img_path = "tmp_cloth.jpg"
assert type(cloth_img_path) == type("")
inputs_upper_dict = take_human_feature_from_dataset(dataset, idx)
if only_show_human:
return Image.fromarray((inputs_upper_dict["densepose"][0].numpy().transpose((1, 2, 0)) * 255).astype(np.uint8))
cloth_readed = read_img_and_trans(dataset, opt,
cloth_img_path
)
#assert ((cloth_readed - inputs_upper["cloth"][opt.datasetting][0]) ** 2).sum().numpy() < 1e-15
cloth_input = {
opt.datasetting: cloth_readed[None,:]
}
mask_img = generate_cloth_mask_and_display(
Image.open(
cloth_img_path
)
)
cloth_mask_input = {
opt.datasetting:
torch.Tensor((np.asarray(mask_img) / 255))[None, None, :]
}
inputs_upper_dict["cloth"] = cloth_input
inputs_upper_dict["cloth_mask"] = cloth_mask_input
return inputs_upper_dict
def pred_func(cloth_img, pidx
):
idx = int(pidx)
im = cloth_img
#### truly input
inputs_upper_dict = take_all_feature_with_dataset(
im, idx, only_show_human = False)
output_slim = single_pred_slim_func(opt, inputs_upper_dict)
output_img = construct_images(output_slim)
return output_img
option = st.selectbox(
"Choose cloth image or Upload cloth image",
("Choose", "Upload", )
)
if type(option) != type(""):
option = "Choose"
img = None
uploaded_file = None
if option == "Upload":
# To read file as bytes:
uploaded_file = st.file_uploader("Upload img")
if uploaded_file is not None:
bytes_data = uploaded_file.getvalue()
img = Image.open(BytesIO(bytes_data))
cloth_img = img.convert("RGB").resize((256 + 128, 512))
st.image(cloth_img)
uploaded_file = st.selectbox(
"Have Choose the image",
("Wait", "Have Done")
)
else:
img = image_select("Choose img", demo_images)
#img = Image.open(img)
cloth_img = img.convert("RGB").resize((256 + 128, 512))
st.image(cloth_img)
uploaded_file = st.selectbox(
"Have Choose the image",
("Wait", "Have Done")
)
if img is not None and (uploaded_file is not "Wait" and uploaded_file is not None):
cloth_img = img.convert("RGB").resize((768, 1024))
#pidx = 44
pidx_index_list = [44, 84, 67]
poeses = []
for idx in range(len(pidx_index_list)):
poeses.append(
take_all_feature_with_dataset(
cloth_img, pidx_index_list[idx], only_show_human = True)
)
col1, col2, col3 = st.columns(3)
with col1:
st.header("Pose 0")
pose_img = poeses[0]
st.image(pose_img)
b = pred_func(cloth_img, pidx_index_list[0])
st.image(b)
with col2:
st.header("Pose 1")
pose_img = poeses[1]
st.image(pose_img)
b = pred_func(cloth_img, pidx_index_list[1])
st.image(b)
with col3:
st.header("Pose 2")
pose_img = poeses[2]
st.image(pose_img)
b = pred_func(cloth_img, pidx_index_list[2])
st.image(b)