Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from torchvision.utils import make_grid as make_image_grid | |
from torchvision.utils import save_image | |
import argparse | |
import os | |
import time | |
from cp_dataset_test import CPDatasetTest, CPDataLoader | |
from networks import ConditionGenerator, load_checkpoint, make_grid | |
from network_generator import SPADEGenerator | |
from tensorboardX import SummaryWriter | |
from utils import * | |
import torchgeometry as tgm | |
from collections import OrderedDict | |
def remove_overlap(seg_out, warped_cm): | |
assert len(warped_cm.shape) == 4 | |
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm | |
return warped_cm | |
def get_opt(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--gpu_ids", default="") | |
parser.add_argument('-j', '--workers', type=int, default=4) | |
parser.add_argument('-b', '--batch-size', type=int, default=1) | |
parser.add_argument('--fp16', action='store_true', help='use amp') | |
# Cuda availability | |
parser.add_argument('--cuda',default=False, help='cuda or cpu') | |
parser.add_argument('--test_name', type=str, default='test', help='test name') | |
parser.add_argument("--dataroot", default="./data/zalando-hd-resize") | |
parser.add_argument("--datamode", default="test") | |
parser.add_argument("--data_list", default="test_pairs.txt") | |
parser.add_argument("--output_dir", type=str, default="./Output") | |
parser.add_argument("--datasetting", default="unpaired") | |
parser.add_argument("--fine_width", type=int, default=768) | |
parser.add_argument("--fine_height", type=int, default=1024) | |
parser.add_argument('--tensorboard_dir', type=str, default='./data/zalando-hd-resize/tensorboard', help='save tensorboard infos') | |
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos') | |
parser.add_argument('--tocg_checkpoint', type=str, default='./eval_models/weights/v0.1/mtviton.pth', help='tocg checkpoint') | |
parser.add_argument('--gen_checkpoint', type=str, default='./eval_models/weights/v0.1/gen.pth', help='G checkpoint') | |
parser.add_argument("--tensorboard_count", type=int, default=100) | |
parser.add_argument("--shuffle", action='store_true', help='shuffle input data') | |
parser.add_argument("--semantic_nc", type=int, default=13) | |
parser.add_argument("--output_nc", type=int, default=13) | |
parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class') | |
# network | |
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1") | |
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu") | |
# training | |
parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad') | |
# Hyper-parameters | |
parser.add_argument('--upsample', type=str, default='bilinear', choices=['nearest', 'bilinear']) | |
parser.add_argument('--occlusion', action='store_true', help="Occlusion handling") | |
# generator | |
parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization') | |
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer') | |
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]') | |
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution') | |
parser.add_argument('--num_upsampling_layers', choices=('normal', 'more', 'most'), default='most', # normal: 256, more: 512 | |
help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator") | |
opt = parser.parse_args() | |
return opt | |
def load_checkpoint_G(model, checkpoint_path,opt): | |
if not os.path.exists(checkpoint_path): | |
print("Invalid path!") | |
return | |
state_dict = torch.load(checkpoint_path) | |
new_state_dict = OrderedDict([(k.replace('ace', 'alias').replace('.Spade', ''), v) for (k, v) in state_dict.items()]) | |
new_state_dict._metadata = OrderedDict([(k.replace('ace', 'alias').replace('.Spade', ''), v) for (k, v) in state_dict._metadata.items()]) | |
model.load_state_dict(new_state_dict, strict=True) | |
if opt.cuda : | |
model.cuda() | |
def test(opt, test_loader, tocg, generator): | |
gauss = tgm.image.GaussianBlur((15, 15), (3, 3)) | |
if opt.cuda: | |
gauss = gauss.cuda() | |
# Model | |
if opt.cuda : | |
tocg.cuda() | |
tocg.eval() | |
generator.eval() | |
if opt.output_dir is not None: | |
output_dir = opt.output_dir | |
else: | |
output_dir = os.path.join('./output', opt.test_name, | |
opt.datamode, opt.datasetting, 'generator', 'output') | |
grid_dir = os.path.join('./output', opt.test_name, | |
opt.datamode, opt.datasetting, 'generator', 'grid') | |
os.makedirs(grid_dir, exist_ok=True) | |
os.makedirs(output_dir, exist_ok=True) | |
num = 0 | |
iter_start_time = time.time() | |
with torch.no_grad(): | |
for inputs in test_loader.data_loader: | |
if opt.cuda : | |
pose_map = inputs['pose'].cuda() | |
pre_clothes_mask = inputs['cloth_mask'][opt.datasetting].cuda() | |
label = inputs['parse'] | |
parse_agnostic = inputs['parse_agnostic'] | |
agnostic = inputs['agnostic'].cuda() | |
clothes = inputs['cloth'][opt.datasetting].cuda() # target cloth | |
densepose = inputs['densepose'].cuda() | |
im = inputs['image'] | |
input_label, input_parse_agnostic = label.cuda(), parse_agnostic.cuda() | |
pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float)).cuda() | |
else : | |
pose_map = inputs['pose'] | |
pre_clothes_mask = inputs['cloth_mask'][opt.datasetting] | |
label = inputs['parse'] | |
parse_agnostic = inputs['parse_agnostic'] | |
agnostic = inputs['agnostic'] | |
clothes = inputs['cloth'][opt.datasetting] # target cloth | |
densepose = inputs['densepose'] | |
im = inputs['image'] | |
input_label, input_parse_agnostic = label, parse_agnostic | |
pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float)) | |
# down | |
pose_map_down = F.interpolate(pose_map, size=(256, 192), mode='bilinear') | |
pre_clothes_mask_down = F.interpolate(pre_clothes_mask, size=(256, 192), mode='nearest') | |
input_label_down = F.interpolate(input_label, size=(256, 192), mode='bilinear') | |
input_parse_agnostic_down = F.interpolate(input_parse_agnostic, size=(256, 192), mode='nearest') | |
agnostic_down = F.interpolate(agnostic, size=(256, 192), mode='nearest') | |
clothes_down = F.interpolate(clothes, size=(256, 192), mode='bilinear') | |
densepose_down = F.interpolate(densepose, size=(256, 192), mode='bilinear') | |
shape = pre_clothes_mask.shape | |
# multi-task inputs | |
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1) | |
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1) | |
# forward | |
flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(opt,input1, input2) | |
# warped cloth mask one hot | |
if opt.cuda : | |
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda() | |
else : | |
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)) | |
if opt.clothmask_composition != 'no_composition': | |
if opt.clothmask_composition == 'detach': | |
cloth_mask = torch.ones_like(fake_segmap) | |
cloth_mask[:,3:4, :, :] = warped_cm_onehot | |
fake_segmap = fake_segmap * cloth_mask | |
if opt.clothmask_composition == 'warp_grad': | |
cloth_mask = torch.ones_like(fake_segmap) | |
cloth_mask[:,3:4, :, :] = warped_clothmask_paired | |
fake_segmap = fake_segmap * cloth_mask | |
# make generator input parse map | |
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(opt.fine_height, opt.fine_width), mode='bilinear')) | |
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None] | |
if opt.cuda : | |
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda() | |
else: | |
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_() | |
old_parse.scatter_(1, fake_parse, 1.0) | |
labels = { | |
0: ['background', [0]], | |
1: ['paste', [2, 4, 7, 8, 9, 10, 11]], | |
2: ['upper', [3]], | |
3: ['hair', [1]], | |
4: ['left_arm', [5]], | |
5: ['right_arm', [6]], | |
6: ['noise', [12]] | |
} | |
if opt.cuda : | |
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda() | |
else: | |
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_() | |
for i in range(len(labels)): | |
for label in labels[i][1]: | |
parse[:, i] += old_parse[:, label] | |
# warped cloth | |
N, _, iH, iW = clothes.shape | |
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1) | |
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3) | |
grid = make_grid(N, iH, iW,opt) | |
warped_grid = grid + flow_norm | |
warped_cloth = F.grid_sample(clothes, warped_grid, padding_mode='border') | |
warped_clothmask = F.grid_sample(pre_clothes_mask, warped_grid, padding_mode='border') | |
if opt.occlusion: | |
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask) | |
warped_cloth = warped_cloth * warped_clothmask + torch.ones_like(warped_cloth) * (1-warped_clothmask) | |
output = generator(torch.cat((agnostic, densepose, warped_cloth), dim=1), parse) | |
# visualize | |
unpaired_names = [] | |
for i in range(shape[0]): | |
grid = make_image_grid([(clothes[i].cpu() / 2 + 0.5), (pre_clothes_mask[i].cpu()).expand(3, -1, -1), visualize_segmap(parse_agnostic.cpu(), batch=i), ((densepose.cpu()[i]+1)/2), | |
(warped_cloth[i].cpu().detach() / 2 + 0.5), (warped_clothmask[i].cpu().detach()).expand(3, -1, -1), visualize_segmap(fake_parse_gauss.cpu(), batch=i), | |
(pose_map[i].cpu()/2 +0.5), (warped_cloth[i].cpu()/2 + 0.5), (agnostic[i].cpu()/2 + 0.5), | |
(im[i]/2 +0.5), (output[i].cpu()/2 +0.5)], | |
nrow=4) | |
unpaired_name = (inputs['c_name']['paired'][i].split('.')[0] + '_' + inputs['c_name'][opt.datasetting][i].split('.')[0] + '.png') | |
save_image(grid, os.path.join(grid_dir, unpaired_name)) | |
unpaired_names.append(unpaired_name) | |
# save output | |
save_images(output, unpaired_names, output_dir) | |
num += shape[0] | |
print(num) | |
print(f"Test time {time.time() - iter_start_time}") | |
def main(): | |
opt = get_opt() | |
print(opt) | |
print("Start to test %s!") | |
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids | |
# create test dataset & loader | |
test_dataset = CPDatasetTest(opt) | |
test_loader = CPDataLoader(opt, test_dataset) | |
# visualization | |
# if not os.path.exists(opt.tensorboard_dir): | |
# os.makedirs(opt.tensorboard_dir) | |
# board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.test_name, opt.datamode, opt.datasetting)) | |
## Model | |
# tocg | |
input1_nc = 4 # cloth + cloth-mask | |
input2_nc = opt.semantic_nc + 3 # parse_agnostic + densepose | |
tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=opt.output_nc, ngf=96, norm_layer=nn.BatchNorm2d) | |
# generator | |
opt.semantic_nc = 7 | |
generator = SPADEGenerator(opt, 3+3+3) | |
generator.print_network() | |
# Load Checkpoint | |
load_checkpoint(tocg, opt.tocg_checkpoint,opt) | |
load_checkpoint_G(generator, opt.gen_checkpoint,opt) | |
# Train | |
test(opt, test_loader, tocg, generator) | |
print("Finished testing!") | |
if __name__ == "__main__": | |
main() |