Spaces:
Running
Running
import torch | |
from torchvision import transforms | |
from PIL import Image | |
import torch.nn.functional as F | |
import numpy as np | |
import cv2 | |
import os | |
def get_clothes_mask(old_label) : | |
clothes = torch.FloatTensor((old_label.cpu().numpy() == 3).astype(np.int)) | |
return clothes | |
def changearm(old_label): | |
label=old_label | |
arm1=torch.FloatTensor((old_label.cpu().numpy()==5).astype(np.int)) | |
arm2=torch.FloatTensor((old_label.cpu().numpy()==6).astype(np.int)) | |
label=label*(1-arm1)+arm1*3 | |
label=label*(1-arm2)+arm2*3 | |
return label | |
def gen_noise(shape): | |
noise = np.zeros(shape, dtype=np.uint8) | |
### noise | |
noise = cv2.randn(noise, 0, 255) | |
noise = np.asarray(noise / 255, dtype=np.uint8) | |
noise = torch.tensor(noise, dtype=torch.float32) | |
return noise | |
def cross_entropy2d(input, target, weight=None, size_average=True): | |
n, c, h, w = input.size() | |
nt, ht, wt = target.size() | |
# Handle inconsistent size between input and target | |
if h != ht or w != wt: | |
input = F.interpolate(input, size=(ht, wt), mode="bilinear", align_corners=True) | |
input = input.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) | |
target = target.view(-1) | |
loss = F.cross_entropy( | |
input, target, weight=weight, size_average=size_average, ignore_index=250 | |
) | |
return loss | |
def ndim_tensor2im(image_tensor, imtype=np.uint8, batch=0): | |
image_numpy = image_tensor[batch].cpu().float().numpy() | |
result = np.argmax(image_numpy, axis=0) | |
return result.astype(imtype) | |
def visualize_segmap(input, multi_channel=True, tensor_out=True, batch=0) : | |
palette = [ | |
0, 0, 0, 128, 0, 0, 254, 0, 0, 0, 85, 0, 169, 0, 51, | |
254, 85, 0, 0, 0, 85, 0, 119, 220, 85, 85, 0, 0, 85, 85, | |
85, 51, 0, 52, 86, 128, 0, 128, 0, 0, 0, 254, 51, 169, 220, | |
0, 254, 254, 85, 254, 169, 169, 254, 85, 254, 254, 0, 254, 169, 0 | |
] | |
input = input.detach() | |
if multi_channel : | |
input = ndim_tensor2im(input,batch=batch) | |
else : | |
input = input[batch][0].cpu() | |
input = np.asarray(input) | |
input = input.astype(np.uint8) | |
input = Image.fromarray(input, 'P') | |
input.putpalette(palette) | |
if tensor_out : | |
trans = transforms.ToTensor() | |
return trans(input.convert('RGB')) | |
return input | |
def pred_to_onehot(prediction) : | |
size = prediction.shape | |
prediction_max = torch.argmax(prediction, dim=1) | |
oneHot_size = (size[0], 13, size[2], size[3]) | |
pred_onehot = torch.FloatTensor(torch.Size(oneHot_size)).zero_() | |
pred_onehot = pred_onehot.scatter_(1, prediction_max.unsqueeze(1).data.long(), 1.0) | |
return pred_onehot | |
def cal_miou(prediction, target) : | |
size = prediction.shape | |
target = target.cpu() | |
prediction = pred_to_onehot(prediction.detach().cpu()) | |
list = [1,2,3,4,5,6,7,8] | |
union = 0 | |
intersection = 0 | |
for b in range(size[0]) : | |
for c in list : | |
intersection += torch.logical_and(target[b,c], prediction[b,c]).sum() | |
union += torch.logical_or(target[b,c], prediction[b,c]).sum() | |
return intersection.item()/union.item() | |
def save_images(img_tensors, img_names, save_dir): | |
for img_tensor, img_name in zip(img_tensors, img_names): | |
tensor = (img_tensor.clone() + 1) * 0.5 * 255 | |
tensor = tensor.cpu().clamp(0, 255) | |
try: | |
array = tensor.numpy().astype('uint8') | |
except: | |
array = tensor.detach().numpy().astype('uint8') | |
if array.shape[0] == 1: | |
array = array.squeeze(0) | |
elif array.shape[0] == 3: | |
array = array.swapaxes(0, 1).swapaxes(1, 2) | |
im = Image.fromarray(array) | |
im.save(os.path.join(save_dir, img_name), format='JPEG') | |
def create_network(cls, opt): | |
net = cls(opt) | |
net.print_network() | |
if len(opt.gpu_ids) > 0: | |
assert(torch.cuda.is_available()) | |
net.cuda() | |
net.init_weights(opt.init_type, opt.init_variance) | |
return net |