HR-VITON-streamlit / utils.py
svjack's picture
Upload 7 files
f774f0f
import torch
from torchvision import transforms
from PIL import Image
import torch.nn.functional as F
import numpy as np
import cv2
import os
def get_clothes_mask(old_label) :
clothes = torch.FloatTensor((old_label.cpu().numpy() == 3).astype(np.int))
return clothes
def changearm(old_label):
label=old_label
arm1=torch.FloatTensor((old_label.cpu().numpy()==5).astype(np.int))
arm2=torch.FloatTensor((old_label.cpu().numpy()==6).astype(np.int))
label=label*(1-arm1)+arm1*3
label=label*(1-arm2)+arm2*3
return label
def gen_noise(shape):
noise = np.zeros(shape, dtype=np.uint8)
### noise
noise = cv2.randn(noise, 0, 255)
noise = np.asarray(noise / 255, dtype=np.uint8)
noise = torch.tensor(noise, dtype=torch.float32)
return noise
def cross_entropy2d(input, target, weight=None, size_average=True):
n, c, h, w = input.size()
nt, ht, wt = target.size()
# Handle inconsistent size between input and target
if h != ht or w != wt:
input = F.interpolate(input, size=(ht, wt), mode="bilinear", align_corners=True)
input = input.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c)
target = target.view(-1)
loss = F.cross_entropy(
input, target, weight=weight, size_average=size_average, ignore_index=250
)
return loss
def ndim_tensor2im(image_tensor, imtype=np.uint8, batch=0):
image_numpy = image_tensor[batch].cpu().float().numpy()
result = np.argmax(image_numpy, axis=0)
return result.astype(imtype)
def visualize_segmap(input, multi_channel=True, tensor_out=True, batch=0) :
palette = [
0, 0, 0, 128, 0, 0, 254, 0, 0, 0, 85, 0, 169, 0, 51,
254, 85, 0, 0, 0, 85, 0, 119, 220, 85, 85, 0, 0, 85, 85,
85, 51, 0, 52, 86, 128, 0, 128, 0, 0, 0, 254, 51, 169, 220,
0, 254, 254, 85, 254, 169, 169, 254, 85, 254, 254, 0, 254, 169, 0
]
input = input.detach()
if multi_channel :
input = ndim_tensor2im(input,batch=batch)
else :
input = input[batch][0].cpu()
input = np.asarray(input)
input = input.astype(np.uint8)
input = Image.fromarray(input, 'P')
input.putpalette(palette)
if tensor_out :
trans = transforms.ToTensor()
return trans(input.convert('RGB'))
return input
def pred_to_onehot(prediction) :
size = prediction.shape
prediction_max = torch.argmax(prediction, dim=1)
oneHot_size = (size[0], 13, size[2], size[3])
pred_onehot = torch.FloatTensor(torch.Size(oneHot_size)).zero_()
pred_onehot = pred_onehot.scatter_(1, prediction_max.unsqueeze(1).data.long(), 1.0)
return pred_onehot
def cal_miou(prediction, target) :
size = prediction.shape
target = target.cpu()
prediction = pred_to_onehot(prediction.detach().cpu())
list = [1,2,3,4,5,6,7,8]
union = 0
intersection = 0
for b in range(size[0]) :
for c in list :
intersection += torch.logical_and(target[b,c], prediction[b,c]).sum()
union += torch.logical_or(target[b,c], prediction[b,c]).sum()
return intersection.item()/union.item()
def save_images(img_tensors, img_names, save_dir):
for img_tensor, img_name in zip(img_tensors, img_names):
tensor = (img_tensor.clone() + 1) * 0.5 * 255
tensor = tensor.cpu().clamp(0, 255)
try:
array = tensor.numpy().astype('uint8')
except:
array = tensor.detach().numpy().astype('uint8')
if array.shape[0] == 1:
array = array.squeeze(0)
elif array.shape[0] == 3:
array = array.swapaxes(0, 1).swapaxes(1, 2)
im = Image.fromarray(array)
im.save(os.path.join(save_dir, img_name), format='JPEG')
def create_network(cls, opt):
net = cls(opt)
net.print_network()
if len(opt.gpu_ids) > 0:
assert(torch.cuda.is_available())
net.cuda()
net.init_weights(opt.init_type, opt.init_variance)
return net