File size: 2,197 Bytes
aaf28df 190f0b3 aaf28df c4f5ea2 aaf28df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import sys
import os
import pandas as pd
import numpy as np
import shutil
from tqdm import tqdm
import re
from donut import DonutModel
import torch
from PIL import Image
import gradio as gr
#from train import *
en_model_path = "question_generator_by_en_on_pic"
#zh_model_path = "question_generator_by_zh_on_pic"
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
en_pretrained_model = DonutModel.from_pretrained(en_model_path)
#zh_pretrained_model = DonutModel.from_pretrained(zh_model_path)
if torch.cuda.is_available():
en_pretrained_model.half()
device = torch.device("cuda")
en_pretrained_model.to(device)
'''
if torch.cuda.is_available():
zh_pretrained_model.half()
device = torch.device("cuda")
zh_pretrained_model.to(device)
'''
en_pretrained_model.eval()
#zh_pretrained_model.eval()
print("have load !")
def demo_process_vqa(input_img, question):
#global pretrained_model, task_prompt, task_name
#global zh_pretrained_model, en_pretrained_model, task_prompt, task_name
input_img = Image.fromarray(input_img)
global en_pretrained_model, task_prompt
user_prompt = task_prompt.replace("{user_input}", question)
output = en_pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
'''
if lang == "en":
output = en_pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
else:
output = zh_pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
'''
req = {
"question": output["answer"],
"answer": output["question"]
}
return req
'''
img_path = "imgs/en_img.png"
demo_process_vqa(Image.open(img_path), "605-7227", "en")
img_path = "imgs/zh_img.png"
demo_process_vqa(Image.open(img_path), "้ถ้ฑ้", "zh")
'''
example_sample = [["en_img.png", "605-7227"]]
demo=gr.Interface(fn=demo_process_vqa, inputs=['image','text'],
outputs=["json"],
examples=example_sample if example_sample else None,
description = 'This _example_ was **drive** from <br/><b><h4>[https://github.com/svjack/docvqa-gen](https://github.com/svjack/docvqa-gen)</h4></b>\n',
cache_examples = False
)
demo.launch(share=False)
|