promptagrow / main.py
t3k45h1's picture
Update main.py
f580797 verified
from fastapi import FastAPI, Form, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, FileResponse
from diffusers import StableDiffusionPipeline
import torch
import uuid
import base64
import io
from PIL import Image
import os
# Set cache directory to a writable location
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface_cache"
# Initialize FastAPI app
app = FastAPI(title="PromptAgro Image Generator API")
# Add CORS middleware to allow frontend connections
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify your frontend domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variable for the pipeline
pipe = None
model_loading = False
def load_model_if_needed():
"""Load model lazily when first request arrives"""
global pipe, model_loading
if pipe is not None:
return True
if model_loading:
return False # Already loading, wait
model_loading = True
success = load_model()
model_loading = False
return success
def load_model():
"""Load the Stable Diffusion model with proper error handling"""
global pipe
print("πŸš€ Loading Stable Diffusion Model...")
model_id = "rupeshs/LCM-runwayml-stable-diffusion-v1-5"
try:
# Create cache directory if it doesn't exist
os.makedirs("/tmp/huggingface_cache", exist_ok=True)
# Use appropriate dtype based on device
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print(f"πŸ“± Device: {device}, dtype: {torch_dtype}")
# Load the model with cache directory specified
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
cache_dir="/tmp/huggingface_cache",
local_files_only=False
)
pipe = pipe.to(device)
# Enable memory efficient attention if available
if hasattr(pipe, 'enable_xformers_memory_efficient_attention'):
try:
pipe.enable_xformers_memory_efficient_attention()
print("βœ… XFormers memory efficient attention enabled")
except Exception:
print("⚠️ XFormers not available, using default attention")
print(f"βœ… Model Loaded successfully on {device}")
return True
except Exception as e:
print(f"❌ Failed to load model: {e}")
pipe = None
return False
# Don't load model on startup - do it lazily
# model_loaded = load_model()
@app.get("/")
async def root():
"""Health check endpoint with enhanced status"""
return {
"status": "alive",
"service": "PromptAgro Image Generator",
"model_loaded": pipe is not None,
"model_loading": model_loading,
"device": "cuda" if torch.cuda.is_available() else "cpu",
"model_status": "loaded" if pipe is not None else ("loading" if model_loading else "not_loaded"),
"torch_dtype": "float16" if torch.cuda.is_available() else "float32",
"ready_for_requests": pipe is not None
}
@app.post("/generate/")
async def generate_image(prompt: str = Form(...)):
"""
Generate product packaging image from input prompt.
Returns image file directly (your original approach).
"""
# Lazy load model on first request
if not load_model_if_needed():
if model_loading:
raise HTTPException(status_code=503, detail="Model is loading, please wait...")
else:
raise HTTPException(status_code=503, detail="Model failed to load. Please check logs.")
print(f"πŸ–ŒοΈ Generating image for prompt: {prompt}")
try:
# Generate image (your original approach)
image = pipe(prompt).images[0]
# Save image to temp file (your original approach)
filename = f"/tmp/{uuid.uuid4().hex}.png"
image.save(filename)
print(f"πŸ“¦ Image saved to {filename}")
# Return image file as response (your original approach)
return FileResponse(filename, media_type="image/png")
except Exception as e:
print(f"❌ Image generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
@app.post("/generate-json/")
async def generate_image_json(
prompt: str = Form(...),
width: int = Form(512),
height: int = Form(512),
num_inference_steps: int = Form(4), # LCM works well with few steps
guidance_scale: float = Form(1.0) # LCM uses low guidance
):
"""
Generate image and return as JSON with base64 data (for frontend integration).
"""
# Lazy load model on first request
if not load_model_if_needed():
if model_loading:
raise HTTPException(status_code=503, detail="Model is loading, please wait...")
else:
raise HTTPException(status_code=503, detail="Model failed to load. Please check logs.")
print(f"πŸ–ŒοΈ Generating image for prompt: {prompt}")
try:
# Generate image with parameters optimized for LCM
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale
).images[0]
# Convert image to base64 for JSON response
buffer = io.BytesIO()
image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
print("βœ… Image generated successfully")
return JSONResponse({
"success": True,
"image_data": f"data:image/png;base64,{img_str}",
"prompt_used": prompt,
"dimensions": {"width": width, "height": height},
"steps": num_inference_steps
})
except Exception as e:
print(f"❌ Generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
@app.post("/generate-packaging/")
async def generate_packaging_specific(
product_name: str = Form(...),
colors: str = Form("green,yellow"),
emotion: str = Form("trust"),
platform: str = Form("farmers-market")
):
"""
Generate packaging with PromptAgro-specific prompt engineering
"""
# Lazy load model on first request
if not load_model_if_needed():
if model_loading:
raise HTTPException(status_code=503, detail="Model is loading, please wait...")
else:
raise HTTPException(status_code=503, detail="Model failed to load. Please check logs.")
# Create professional prompt for agricultural packaging
prompt = f"""Professional agricultural product packaging design for {product_name},
modern clean style, {colors.replace(',', ' and ')} color scheme, premium typography,
conveying {emotion}, suitable for {platform}, product photography style,
white background, high quality commercial design, realistic packaging mockup,
professional studio lighting, eco-friendly agricultural branding"""
prompt = prompt.strip().replace('\n', ' ').replace(' ', ' ')
print(f"🎨 Generating packaging for: {product_name}")
print(f"πŸ“ Using prompt: {prompt}")
try:
# Generate with packaging-optimized settings
image = pipe(
prompt=prompt,
width=768,
height=768,
num_inference_steps=6,
guidance_scale=1.5
).images[0]
# Convert to base64
buffer = io.BytesIO()
image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
return JSONResponse({
"success": True,
"image_data": f"data:image/png;base64,{img_str}",
"prompt_used": prompt,
"product_name": product_name,
"generator": "Stable Diffusion LCM",
"cost": "FREE",
"processing_time": "~3-5 seconds"
})
except Exception as e:
print(f"❌ Packaging generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)