tatianija's picture
Update app.py
0a26b0c verified
raw
history blame
48.8 kB
import os
import gradio as gr
import requests
import inspect
import time
import pandas as pd
from smolagents import DuckDuckGoSearchTool
import threading
from typing import Dict, List, Optional, Tuple, Union
import json
from huggingface_hub import InferenceClient
import base64
from PIL import Image
import io
import tempfile
import urllib.parse
from pathlib import Path
import re
from bs4 import BeautifulSoup
import mimetypes
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Global Cache for Answers ---
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
# --- Web Content Fetcher ---
class WebContentFetcher:
def __init__(self, debug: bool = True):
self.debug = debug
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
})
def extract_urls_from_text(self, text: str) -> List[str]:
"""Extract URLs from text using regex."""
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
urls = re.findall(url_pattern, text)
return list(set(urls)) # Remove duplicates
def fetch_url_content(self, url: str) -> Dict[str, str]:
"""
Fetch content from a URL and extract text, handling different content types.
Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys.
"""
try:
# Clean the URL
url = url.strip()
if not url.startswith(('http://', 'https://')):
url = 'https://' + url
if self.debug:
print(f"Fetching URL: {url}")
response = self.session.get(url, timeout=30, allow_redirects=True)
response.raise_for_status()
content_type = response.headers.get('content-type', '').lower()
result = {
'url': url,
'content_type': content_type,
'title': '',
'content': '',
'error': None
}
# Handle different content types
if 'text/html' in content_type:
# Parse HTML content
soup = BeautifulSoup(response.content, 'html.parser')
# Extract title
title_tag = soup.find('title')
result['title'] = title_tag.get_text().strip() if title_tag else 'No title'
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Extract text content
text_content = soup.get_text()
# Clean up text
lines = (line.strip() for line in text_content.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text_content = ' '.join(chunk for chunk in chunks if chunk)
# Limit content length
if len(text_content) > 8000:
text_content = text_content[:8000] + "... (truncated)"
result['content'] = text_content
elif 'text/plain' in content_type:
# Handle plain text
text_content = response.text
if len(text_content) > 8000:
text_content = text_content[:8000] + "... (truncated)"
result['content'] = text_content
result['title'] = f"Text document from {url}"
elif 'application/json' in content_type:
# Handle JSON content
try:
json_data = response.json()
result['content'] = json.dumps(json_data, indent=2)[:8000]
result['title'] = f"JSON document from {url}"
except:
result['content'] = response.text[:8000]
result['title'] = f"JSON document from {url}"
elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']):
# Handle document files
result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented."
result['title'] = f"Document from {url}"
else:
# Handle other content types
if response.text:
content = response.text[:8000]
result['content'] = content
result['title'] = f"Content from {url}"
else:
result['content'] = f"Non-text content detected ({content_type})"
result['title'] = f"File from {url}"
if self.debug:
print(f"Successfully fetched content from {url}: {len(result['content'])} characters")
return result
except requests.exceptions.RequestException as e:
error_msg = f"Failed to fetch {url}: {str(e)}"
if self.debug:
print(error_msg)
return {
'url': url,
'content_type': 'error',
'title': f"Error fetching {url}",
'content': '',
'error': error_msg
}
except Exception as e:
error_msg = f"Unexpected error fetching {url}: {str(e)}"
if self.debug:
print(error_msg)
return {
'url': url,
'content_type': 'error',
'title': f"Error fetching {url}",
'content': '',
'error': error_msg
}
def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]:
"""Fetch content from multiple URLs."""
results = []
for url in urls[:5]: # Limit to 5 URLs to avoid excessive processing
result = self.fetch_url_content(url)
results.append(result)
time.sleep(1) # Be respectful to servers
return results
def remove_thinking_tags(text):
import re
# Remove <think>...</think> blocks
cleaned = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
# Remove thinking markers
cleaned = re.sub(r'<thinking>.*?</thinking>', '', cleaned, flags=re.DOTALL)
return cleaned.strip()
# --- File Download Utility ---
def download_attachment(url: str, temp_dir: str) -> Optional[str]:
"""
Download an attachment from URL to a temporary directory.
Returns the local file path if successful, None otherwise.
"""
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
# Extract filename from URL or create one based on content type
parsed_url = urllib.parse.urlparse(url)
filename = os.path.basename(parsed_url.path)
if not filename or '.' not in filename:
# Try to determine extension from content type
content_type = response.headers.get('content-type', '').lower()
if 'image' in content_type:
if 'jpeg' in content_type or 'jpg' in content_type:
filename = f"attachment_{int(time.time())}.jpg"
elif 'png' in content_type:
filename = f"attachment_{int(time.time())}.png"
else:
filename = f"attachment_{int(time.time())}.img"
elif 'audio' in content_type:
if 'mp3' in content_type:
filename = f"attachment_{int(time.time())}.mp3"
elif 'wav' in content_type:
filename = f"attachment_{int(time.time())}.wav"
else:
filename = f"attachment_{int(time.time())}.audio"
elif 'python' in content_type or 'text' in content_type:
filename = f"attachment_{int(time.time())}.py"
else:
filename = f"attachment_{int(time.time())}.file"
file_path = os.path.join(temp_dir, filename)
with open(file_path, 'wb') as f:
f.write(response.content)
print(f"Downloaded attachment: {url} -> {file_path}")
return file_path
except Exception as e:
print(f"Failed to download attachment {url}: {e}")
return None
# --- Code Processing Tool ---
class CodeAnalysisTool:
def __init__(self, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
self.client = InferenceClient(model=model_name, provider="sambanova")
def analyze_code(self, code_path: str) -> str:
"""
Analyze Python code and return insights.
"""
try:
with open(code_path, 'r', encoding='utf-8') as f:
code_content = f.read()
# Limit code length for analysis
if len(code_content) > 5000:
code_content = code_content[:5000] + "\n... (truncated)"
analysis_prompt = f"""Analyze this Python code and provide a concise summary of:
1. What the code does (main functionality)
2. Key functions/classes
3. Any notable patterns or issues
4. Input/output behavior if applicable
Code:
```python
{code_content}
```
Provide a brief, focused analysis:"""
messages = [{"role": "user", "content": analysis_prompt}]
response = self.client.chat_completion(
messages=messages,
max_tokens=500,
temperature=0.3
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Code analysis failed: {e}"
# --- Image Processing Tool ---
class ImageAnalysisTool:
def __init__(self, model_name: str = "microsoft/Florence-2-large"):
self.client = InferenceClient(model=model_name)
def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str:
"""
Analyze an image and return a description.
"""
try:
# Open and process the image
with open(image_path, "rb") as f:
image_bytes = f.read()
# Use the vision model to analyze the image
response = self.client.image_to_text(
image=image_bytes,
model="microsoft/Florence-2-large"
)
return response.get("generated_text", "Could not analyze image")
except Exception as e:
try:
# Fallback: use a different vision model
response = self.client.image_to_text(
image=image_bytes,
model="Salesforce/blip-image-captioning-large"
)
return response.get("generated_text", f"Image analysis error: {e}")
except:
return f"Image analysis failed: {e}"
def extract_text_from_image(self, image_path: str) -> str:
"""
Extract text from an image using OCR.
"""
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
# Use an OCR model
response = self.client.image_to_text(
image=image_bytes,
model="microsoft/trocr-base-printed"
)
return response.get("generated_text", "No text found in image")
except Exception as e:
return f"OCR failed: {e}"
# --- Audio Processing Tool ---
class AudioTranscriptionTool:
def __init__(self, model_name: str = "openai/whisper-large-v3"):
self.client = InferenceClient(model=model_name)
def transcribe_audio(self, audio_path: str) -> str:
"""
Transcribe audio file to text.
"""
try:
with open(audio_path, "rb") as f:
audio_bytes = f.read()
# Use Whisper for transcription
response = self.client.automatic_speech_recognition(
audio=audio_bytes
)
return response.get("text", "Could not transcribe audio")
except Exception as e:
try:
# Fallback to a different ASR model
response = self.client.automatic_speech_recognition(
audio=audio_bytes,
model="facebook/wav2vec2-large-960h-lv60-self"
)
return response.get("text", f"Audio transcription error: {e}")
except:
return f"Audio transcription failed: {e}"
# --- Enhanced Intelligent Agent with URL Processing ---
class IntelligentAgent:
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
self.search = DuckDuckGoSearchTool()
self.client = InferenceClient(model=model_name, provider="sambanova")
self.image_tool = ImageAnalysisTool()
self.audio_tool = AudioTranscriptionTool()
self.code_tool = CodeAnalysisTool(model_name)
self.web_fetcher = WebContentFetcher(debug)
self.debug = debug
if self.debug:
print(f"IntelligentAgent initialized with model: {model_name}")
def _chat_completion(self, prompt: str, max_tokens: int = 500, temperature: float = 0.3) -> str:
"""
Use chat completion instead of text generation to avoid provider compatibility issues.
"""
try:
messages = [{"role": "user", "content": prompt}]
# Try chat completion first
try:
response = self.client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return remove_thinking_tags(response.choices[0].message.content.strip())
except Exception as chat_error:
if self.debug:
print(f"Chat completion failed: {chat_error}, trying text generation...")
# Fallback to text generation
response = self.client.conversational(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=temperature > 0
)
response = remove_thinking_tags(response.strip)
return response.strip()
except Exception as e:
if self.debug:
print(f"Both chat completion and text generation failed: {e}")
raise e
def _extract_and_process_urls(self, question_text: str) -> str:
"""
Extract URLs from question text and fetch their content.
Returns formatted content from all URLs.
"""
urls = self.web_fetcher.extract_urls_from_text(question_text)
if not urls:
return ""
if self.debug:
print(f"Found {len(urls)} URLs in question: {urls}")
url_contents = self.web_fetcher.fetch_multiple_urls(urls)
if not url_contents:
return ""
# Format the content
formatted_content = []
for content_data in url_contents:
if content_data['error']:
formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}")
else:
formatted_content.append(
f"URL: {content_data['url']}\n"
f"Title: {content_data['title']}\n"
f"Content Type: {content_data['content_type']}\n"
f"Content: {content_data['content']}"
)
return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50
def _detect_and_download_attachments(self, question_data: dict) -> Tuple[List[str], List[str], List[str]]:
"""
Detect and download attachments from question data.
Returns (image_files, audio_files, code_files)
"""
image_files = []
audio_files = []
code_files = []
# Create temporary directory for downloads
temp_dir = tempfile.mkdtemp(prefix="agent_attachments_")
# Check for attachments in various fields
attachments = []
# Common fields where attachments might be found
attachment_fields = ['attachments', 'files', 'media', 'resources']
for field in attachment_fields:
if field in question_data:
field_data = question_data[field]
if isinstance(field_data, list):
attachments.extend(field_data)
elif isinstance(field_data, str):
attachments.append(field_data)
# Also check if the question text contains file URLs (not web URLs)
question_text = question_data.get('question', '')
if 'http' in question_text:
# Only consider URLs that likely point to files, not web pages
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', question_text)
for url in urls:
# Check if URL likely points to a file (has file extension)
parsed = urllib.parse.urlparse(url)
path = parsed.path.lower()
if any(path.endswith(ext) for ext in ['.jpg', '.jpeg', '.png', '.gif', '.mp3', '.wav', '.py', '.txt', '.pdf']):
attachments.append(url)
# Download and categorize attachments
for attachment in attachments:
if isinstance(attachment, dict):
url = attachment.get('url') or attachment.get('link') or attachment.get('file_url')
file_type = attachment.get('type', '').lower()
else:
url = attachment
file_type = ''
if not url:
continue
# Download the file
file_path = download_attachment(url, temp_dir)
if not file_path:
continue
# Categorize based on extension or type
file_ext = Path(file_path).suffix.lower()
if file_type:
if 'image' in file_type or file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
image_files.append(file_path)
elif 'audio' in file_type or file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac']:
audio_files.append(file_path)
elif 'python' in file_type or 'code' in file_type or file_ext in ['.py', '.txt']:
code_files.append(file_path)
else:
# Auto-detect based on extension
if file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
image_files.append(file_path)
elif file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac']:
audio_files.append(file_path)
elif file_ext in ['.py', '.txt']:
code_files.append(file_path)
if self.debug:
print(f"Downloaded attachments: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files")
return image_files, audio_files, code_files
def _process_attachments(self, image_files: List[str] = None, audio_files: List[str] = None, code_files: List[str] = None) -> str:
"""
Process all types of attachments and return their content as text.
"""
attachment_content = []
# Process code files
if code_files:
for code_file in code_files:
if code_file and os.path.exists(code_file):
try:
# First, include the raw code content (truncated)
with open(code_file, 'r', encoding='utf-8') as f:
code_content = f.read()
if len(code_content) > 1000:
code_preview = code_content[:1000] + "\n... (truncated)"
else:
code_preview = code_content
attachment_content.append(f"Code File Content:\n```python\n{code_preview}\n```")
# Then add analysis
code_analysis = self.code_tool.analyze_code(code_file)
attachment_content.append(f"Code Analysis: {code_analysis}")
except Exception as e:
attachment_content.append(f"Error processing code file {code_file}: {e}")
# Process images
if image_files:
for image_file in image_files:
if image_file and os.path.exists(image_file):
try:
# Analyze the image
image_description = self.image_tool.analyze_image(image_file)
attachment_content.append(f"Image Analysis: {image_description}")
# Try to extract text from image
extracted_text = self.image_tool.extract_text_from_image(image_file)
if extracted_text and "No text found" not in extracted_text:
attachment_content.append(f"Text from Image: {extracted_text}")
except Exception as e:
attachment_content.append(f"Error processing image {image_file}: {e}")
# Process audio files
if audio_files:
for audio_file in audio_files:
if audio_file and os.path.exists(audio_file):
try:
# Transcribe the audio
transcription = self.audio_tool.transcribe_audio(audio_file)
attachment_content.append(f"Audio Transcription: {transcription}")
except Exception as e:
attachment_content.append(f"Error processing audio {audio_file}: {e}")
return "\n\n".join(attachment_content) if attachment_content else ""
def _should_search(self, question: str, attachment_context: str = "", url_context: str = "") -> bool:
"""
Use LLM to determine if search is needed for the question, considering attachment and URL context.
Returns True if search is recommended, False otherwise.
"""
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
SEARCH IS NEEDED for:
- Current events, news, recent developments
- Real-time data (weather, stock prices, sports scores)
- Specific factual information that changes frequently
- Recent product releases, company information
- Current status of people, organizations, or projects
- Location-specific current information
SEARCH IS NOT NEEDED for:
- General knowledge questions
- Mathematical calculations
- Programming concepts and syntax
- Historical facts (older than 1 year)
- Definitions of well-established concepts
- How-to instructions for common tasks
- Creative writing or opinion-based responses
- Questions that can be answered from attached files (code, images, audio)
- Questions that can be answered from URL content provided
- Code analysis, debugging, or explanation questions
- Questions about uploaded or linked content
Question: "{question}"
{f"Attachment Context Available: {attachment_context[:500]}..." if attachment_context else "No attachment context available."}
{f"URL Content Available: {url_context[:500]}..." if url_context else "No URL content available."}
If you cannot provide an answer, reply with "NO_SEARCH". Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
Example responses:
- "SEARCH - Current weather data needed"
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
- "NO_SEARCH - Can be answered from attached code/image/URL content"
"""
try:
response = self._chat_completion(decision_prompt, max_tokens=50, temperature=0.1)
decision = response.strip().upper()
should_search = decision.startswith("SEARCH")
time.sleep(5)
if self.debug:
print(f"Decision regarding the search: {decision}")
return should_search
except Exception as e:
if self.debug:
print(f"Error in search decision: {e}, defaulting to no search for questions with context")
# Default to no search if decision fails and there is context available
return len(attachment_context) == 0 and len(url_context) == 0
def _answer_with_llm(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
"""
Generate answer using LLM without search, considering attachment and URL context.
"""
context_sections = []
if attachment_context:
context_sections.append(f"Attachment Context:\n{attachment_context}")
if url_context:
context_sections.append(f"URL Content:\n{url_context}")
context_section = "\n\n".join(context_sections) if context_sections else ""
answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question.
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Do not add a dot after the numbers.
Do not report on your thoughts. Do not provide explanations.
{context_section}
Question: {question}
Answer:"""
try:
response = self._chat_completion(answer_prompt, max_tokens=500, temperature=0.3)
response = remove_thinking_tags(response)
return response
except Exception as e:
return f"Sorry, I encountered an error generating the response: {e}"
def _answer_with_search(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
"""
Generate answer using search results and LLM, considering attachment and URL context.
"""
try:
# Perform search
time.sleep(10)
search_results = self.search(question)
#if self.debug:
# print(f"Search results type: {type(search_results)}")
if not search_results:
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
# Format search results - handle different result formats
if isinstance(search_results, str):
search_context = search_results
else:
# Handle list of results
formatted_results = []
for i, result in enumerate(search_results[:3]): # Use top 3 results
if isinstance(result, dict):
title = result.get("title", "No title")
snippet = result.get("snippet", "").strip()
link = result.get("link", "")
formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}")
elif isinstance(result, str):
formatted_results.append(result)
else:
formatted_results.append(str(result))
search_context = "\n\n".join(formatted_results)
# Generate answer using search context, attachment context, and URL context
context_sections = [f"Search Results:\n{search_context}"]
if attachment_context:
context_sections.append(f"Attachment Context:\n{attachment_context}")
if url_context:
context_sections.append(f"URL Content:\n{url_context}")
full_context = "\n\n".join(context_sections)
if self.debug:
print(f"Full context: {full_context}")
answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question.
Based on the search results and the context sections below, provide an answer to the question.
If the search results don't fully answer the question, you can supplement with information from other context sections or your general knowledge.
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
Do not add dot if your answer is a number.
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Do not report on your thoughts. Do not provide explanations.
Question: {question}
{full_context}
Answer:"""
try:
response = self._chat_completion(answer_prompt, max_tokens=600, temperature=0.3)
response = remove_thinking_tags(response)
return response
except Exception as e:
if self.debug:
print(f"LLM generation error: {e}")
# Fallback to simple search result formatting
if search_results:
if isinstance(search_results, str):
return search_results
elif isinstance(search_results, list) and len(search_results) > 0:
first_result = search_results[0]
if isinstance(first_result, dict):
title = first_result.get("title", "Search Result")
snippet = first_result.get("snippet", "").strip()
link = first_result.get("link", "")
return f"**{title}**\n\n{snippet}\n\n{f'Source: {link}' if link else ''}"
else:
return str(first_result)
else:
return str(search_results)
else:
return "Search completed but no usable results found."
except Exception as e:
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
def process_question_with_attachments(self, question_data: dict) -> str:
"""
Process a question that may have attachments and URLs.
"""
question_text = question_data.get('question', '')
if self.debug:
print(f"Processing question with potential attachments and URLs: {question_text[:100]}...")
try:
# Detect and download attachments
image_files, audio_files, code_files = self._detect_and_download_attachments(question_data)
# Process attachments to get context
attachment_context = self._process_attachments(image_files, audio_files, code_files)
if self.debug and attachment_context:
print(f"Attachment context: {attachment_context[:800]}...")
# Decide whether to search
if self._should_search(question_text, attachment_context):
if self.debug:
print("Using search-based approach")
answer = self._answer_with_search(question_text, attachment_context)
answer = remove_thinking_tags(answer)
else:
if self.debug:
print("Using LLM-only approach")
answer = self._answer_with_llm(question_text, attachment_context)
print("here")
print(answer)
answer = remove_thinking_tags(answer)
print(answer)
# Cleanup temporary files
if image_files or audio_files or code_files:
try:
all_files = image_files + audio_files + code_files
temp_dirs = set(os.path.dirname(f) for f in all_files)
for temp_dir in temp_dirs:
import shutil
shutil.rmtree(temp_dir, ignore_errors=True)
except Exception as cleanup_error:
if self.debug:
print(f"Cleanup error: {cleanup_error}")
except Exception as e:
answer = f"Sorry, I encountered an error: {e}"
if self.debug:
print(f"Agent returning answer: {answer[:100]}...")
answer = remove_thinking_tags(answer)
return answer
def __call__(self, question: str, image_files: List[str] = None, audio_files: List[str] = None) -> str:
"""
Main entry point for manual testing - process media files and generate response.
"""
if self.debug:
print(f"Agent received question: {question}")
print(f"Image files: {image_files}")
print(f"Audio files: {audio_files}")
# Early validation
if not question or not question.strip():
return "Please provide a valid question."
try:
# Process media files first
attachment_context = self._process_attachments(image_files, audio_files, [])
if self.debug and attachment_context:
print(f"Media context: {attachment_context[:200]}...")
# Decide whether to search
if self._should_search(question, attachment_context):
if self.debug:
print("Using search-based approach")
answer = self._answer_with_search(question, attachment_context)
answer = remove_thinking_tags(answer)
else:
if self.debug:
print("Using LLM-only approach")
answer = self._answer_with_llm(question, attachment_context)
answer = remove_thinking_tags(answer)
except Exception as e:
answer = f"Sorry, I encountered an error: {e}"
if self.debug:
print(f"Agent returning answer: {answer[:100]}...")
answer = remove_thinking_tags(answer)
return answer
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
"""
Fetch questions from the API and cache them.
"""
global cached_questions
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
cached_questions = questions_data
# Create DataFrame for display
display_data = []
for item in questions_data:
# Check for attachments
has_attachments = False
attachment_info = ""
# Check various fields for attachments
attachment_fields = ['attachments', 'files', 'media', 'resources']
for field in attachment_fields:
if field in item and item[field]:
has_attachments = True
if isinstance(item[field], list):
attachment_info += f"{len(item[field])} {field}, "
else:
attachment_info += f"{field}, "
# Check if question contains URLs
question_text = item.get("question", "")
if 'http' in question_text:
has_attachments = True
attachment_info += "URLs in text, "
if attachment_info:
attachment_info = attachment_info.rstrip(", ")
display_data.append({
"Task ID": item.get("task_id", "Unknown"),
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Has Attachments": "Yes" if has_attachments else "No",
"Attachment Info": attachment_info
})
df = pd.DataFrame(display_data)
attachment_count = sum(1 for item in display_data if item["Has Attachments"] == "Yes")
status_msg = f"Successfully fetched {len(questions_data)} questions. {attachment_count} questions have attachments. Ready to generate answers."
return status_msg, df
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
except Exception as e:
return f"An unexpected error occurred: {e}", None
def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct", progress_callback=None):
"""
Generate answers for all cached questions asynchronously using the intelligent agent.
"""
global cached_answers, processing_status
if not cached_questions:
return "No questions available. Please fetch questions first."
processing_status["is_processing"] = True
processing_status["progress"] = 0
processing_status["total"] = len(cached_questions)
try:
agent = IntelligentAgent(debug=True, model_name=model_name)
cached_answers = {}
for i, question_data in enumerate(cached_questions):
if not processing_status["is_processing"]: # Check if cancelled
break
task_id = question_data.get("task_id")
question_text = question_data.get("question")
if not task_id or question_text is None:
continue
try:
# Use the new method that handles attachments
answer = agent.process_question_with_attachments(question_data)
answer = remove_thinking_tags(answer)
cached_answers[task_id] = {
"question": question_text,
"answer": answer
}
except Exception as e:
cached_answers[task_id] = {
"question": question_text,
"answer": f"AGENT ERROR: {e}"
}
processing_status["progress"] = i + 1
if progress_callback:
progress_callback(i + 1, len(cached_questions))
except Exception as e:
print(f"Error in generate_answers_async: {e}")
finally:
processing_status["is_processing"] = False
def start_answer_generation(model_choice: str):
"""
Start the answer generation process in a separate thread.
"""
if processing_status["is_processing"]:
return "Answer generation is already in progress."
if not cached_questions:
return "No questions available. Please fetch questions first."
# Map model choice to actual model name
model_map = {
"Llama 3.1 8B": "meta-llama/Llama-3.1-8B-Instruct",
"Llama 3.3 70B": "meta-llama/Llama-3.3-70B-Instruct",
"Llama shallow": "tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4",
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
"Qwen 2.5": "Qwen/Qwen‑2.5‑Omni‑7B",
#"Qwen 2.5 instruct": "Qwen/Qwen2.5-14B-Instruct-1M",
"Qwen 3": "Qwen/Qwen3-32B"
}
selected_model = model_map.get(model_choice, "meta-llama/Llama-3.1-8B-Instruct")
# Start generation in background thread
thread = threading.Thread(target=generate_answers_async, args=(selected_model,))
thread.daemon = True
thread.start()
return f"Answer generation started using {model_choice}. Check progress."
def get_generation_progress():
"""
Get the current progress of answer generation.
"""
if not processing_status["is_processing"] and processing_status["progress"] == 0:
return "Not started"
if processing_status["is_processing"]:
progress = processing_status["progress"]
total = processing_status["total"]
status_msg = f"Generating answers... {progress}/{total} completed"
return status_msg
else:
# Generation completed
if cached_answers:
# Create DataFrame with results
display_data = []
for task_id, data in cached_answers.items():
display_data.append({
"Task ID": task_id,
"Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
"Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
})
df = pd.DataFrame(display_data)
status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
return status_msg, df
else:
return "Answer generation completed but no answers were generated."
def submit_cached_answers(profile: gr.OAuthProfile | None):
"""
Submit the cached answers to the evaluation API.
"""
global cached_answers
if not profile:
return "Please log in to Hugging Face first.", None
if not cached_answers:
return "No cached answers available. Please generate answers first.", None
username = profile.username
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
# Prepare submission payload
answers_payload = []
for task_id, data in cached_answers.items():
answers_payload.append({
"task_id": task_id,
"submitted_answer": data["answer"]
})
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
# Submit to API
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
# Create results DataFrame
results_log = []
for task_id, data in cached_answers.items():
results_log.append({
"Task ID": task_id,
"Question": data["question"],
"Submitted Answer": data["answer"]
})
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except:
error_detail += f" Response: {e.response.text[:500]}"
return f"Submission Failed: {error_detail}", None
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", None
except Exception as e:
return f"Submission Failed: {e}", None
def clear_cache():
"""
Clear all cached data.
"""
global cached_answers, cached_questions, processing_status
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
return "Cache cleared successfully.", None
# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Intelligent Agent with Media Processing") as demo:
gr.Markdown("# Intelligent Agent with Conditional Search and Media Processing")
gr.Markdown("This agent can process images and audio files, uses an LLM to decide when search is needed, optimizing for both accuracy and efficiency.")
with gr.Row():
gr.LoginButton()
clear_btn = gr.Button("Clear Cache", variant="secondary")
with gr.Tab("Step 1: Fetch Questions"):
gr.Markdown("### Fetch Questions from API")
fetch_btn = gr.Button("Fetch Questions", variant="primary")
fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
questions_table = gr.DataFrame(label="Available Questions", wrap=True)
fetch_btn.click(
fn=fetch_questions,
outputs=[fetch_status, questions_table]
)
with gr.Tab("Step 2: Generate Answers"):
gr.Markdown("### Generate Answers with Intelligent Search Decision")
with gr.Row():
model_choice = gr.Dropdown(
choices=["Llama 3.1 8B", "Llama 3.3 70B", "Llama shallow", "Mistral 7B", "Qwen 2.5", "Qwen 3"],
value="Llama 3.1 8B",
label="Select Model"
)
generate_btn = gr.Button("Start Answer Generation", variant="primary")
refresh_btn = gr.Button("Refresh Progress", variant="secondary")
generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
answers_table = gr.DataFrame(label="Generated Answers", wrap=True)
generate_btn.click(
fn=start_answer_generation,
inputs=[model_choice],
outputs=generation_status
)
refresh_btn.click(
fn=get_generation_progress,
outputs=[generation_status, answers_table]
)
with gr.Tab("Step 3: Submit Results"):
gr.Markdown("### Submit Generated Answers")
submit_btn = gr.Button("Submit Answers", variant="primary")
submit_status = gr.Textbox(label="Submission Status", lines=4, interactive=False)
results_table = gr.DataFrame(label="Submission Results", wrap=True)
submit_btn.click(
fn=submit_cached_answers,
outputs=[submit_status, results_table]
)
# Clear cache functionality
clear_btn.click(
fn=clear_cache,
outputs=[fetch_status, questions_table]
)
if __name__ == "__main__":
demo.launch()