File size: 48,791 Bytes
10e9b7d
 
eccf8e4
7d65c66
620f572
3c4371f
c275bbd
3164d5a
430ca10
3164d5a
7067f57
430ca10
 
 
5cd098a
 
 
958c53e
 
 
3164d5a
e80aab9
3db6293
e80aab9
3164d5a
 
 
 
8b49454
958c53e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a0d5a4
 
 
 
 
 
 
 
 
5cd098a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
029d654
5cd098a
 
 
 
 
 
 
430ca10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
958c53e
61401c1
c5b02db
c275bbd
430ca10
 
 
5cd098a
958c53e
8b49454
 
61401c1
 
f6609f5
 
 
 
 
 
 
 
 
 
 
 
9a0d5a4
f6609f5
029d654
f6609f5
 
 
 
 
02c1d91
f6609f5
 
 
 
 
029d654
f6609f5
 
 
 
 
 
 
958c53e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd098a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
958c53e
5cd098a
 
958c53e
5cd098a
958c53e
 
 
 
 
 
5cd098a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430ca10
5cd098a
430ca10
5cd098a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430ca10
 
 
 
 
 
 
 
5cd098a
430ca10
 
 
 
5cd098a
430ca10
 
5cd098a
430ca10
 
 
 
 
 
 
 
5cd098a
430ca10
 
5cd098a
430ca10
5cd098a
430ca10
958c53e
61401c1
958c53e
61401c1
 
f6609f5
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd098a
958c53e
5cd098a
958c53e
1b2a135
 
 
5cd098a
87f7811
958c53e
 
6d1254f
1b2a135
 
 
 
958c53e
1b2a135
 
 
f6609f5
1b2a135
 
 
d8e55a1
1b2a135
 
bddeb43
1b2a135
 
 
 
 
958c53e
 
 
1b2a135
958c53e
1b2a135
958c53e
1b2a135
958c53e
 
 
 
 
 
 
 
 
87f7811
02492a1
48cda19
6d1254f
 
 
 
 
87f7811
 
1b2a135
 
 
 
 
5f7d476
 
f6609f5
1b2a135
 
 
 
958c53e
1b2a135
958c53e
1b2a135
 
 
10d25e1
1b2a135
 
0a26b0c
 
291f4f8
1b2a135
958c53e
1b2a135
291f4f8
e73a565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2a135
e73a565
0a26b0c
1b2a135
958c53e
 
 
 
 
 
 
 
 
 
0a26b0c
 
 
 
87f7811
02492a1
958c53e
 
48cda19
 
 
 
 
6d1254f
87f7811
1b2a135
 
958c53e
87f7811
1b2a135
 
 
f6609f5
60bc822
f6609f5
1b2a135
 
e73a565
 
1b2a135
e73a565
 
 
 
 
 
 
 
 
 
 
 
291f4f8
e73a565
291f4f8
 
1b2a135
 
958c53e
5cd098a
 
 
958c53e
5cd098a
 
 
 
958c53e
5cd098a
 
 
 
 
 
 
 
 
ad1e474
5cd098a
 
 
 
 
 
bffa900
5cd098a
 
 
 
10f6873
 
bffa900
10f6873
5cd098a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e3bcb5
5cd098a
1b2a135
87f7811
1b2a135
5cd098a
1b2a135
 
 
87f7811
 
1b2a135
 
 
 
 
 
87f7811
5cd098a
87f7811
5cd098a
 
87f7811
1b2a135
5cd098a
1b2a135
 
5cd098a
4f205dc
1b2a135
 
 
5cd098a
4f205dc
1b2a135
 
 
 
 
4e3bcb5
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd098a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2a135
 
5cd098a
 
 
1b2a135
 
 
5cd098a
 
 
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd098a
1b2a135
 
 
5cd098a
 
1b2a135
 
 
 
 
5cd098a
 
21ff4f2
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440630e
1b2a135
 
440630e
1b2a135
 
 
 
9c5a793
33299b0
a414e9c
 
33299b0
a414e9c
 
1b2a135
 
 
 
 
 
 
 
 
440630e
5cd098a
 
37deecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2a135
37deecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9889802
37deecf
 
 
 
 
 
 
 
 
 
 
33299b0
37deecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7656ca
37deecf
 
 
 
 
 
b7656ca
37deecf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
import os
import gradio as gr
import requests
import inspect
import time
import pandas as pd
from smolagents import DuckDuckGoSearchTool
import threading
from typing import Dict, List, Optional, Tuple, Union
import json
from huggingface_hub import InferenceClient
import base64
from PIL import Image
import io
import tempfile
import urllib.parse
from pathlib import Path
import re
from bs4 import BeautifulSoup
import mimetypes

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Global Cache for Answers ---
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}

# --- Web Content Fetcher ---
class WebContentFetcher:
    def __init__(self, debug: bool = True):
        self.debug = debug
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        })
        
    def extract_urls_from_text(self, text: str) -> List[str]:
        """Extract URLs from text using regex."""
        url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
        urls = re.findall(url_pattern, text)
        return list(set(urls))  # Remove duplicates
    
    def fetch_url_content(self, url: str) -> Dict[str, str]:
        """
        Fetch content from a URL and extract text, handling different content types.
        Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys.
        """
        try:
            # Clean the URL
            url = url.strip()
            if not url.startswith(('http://', 'https://')):
                url = 'https://' + url
            
            if self.debug:
                print(f"Fetching URL: {url}")
            
            response = self.session.get(url, timeout=30, allow_redirects=True)
            response.raise_for_status()
            
            content_type = response.headers.get('content-type', '').lower()
            
            result = {
                'url': url,
                'content_type': content_type,
                'title': '',
                'content': '',
                'error': None
            }
            
            # Handle different content types
            if 'text/html' in content_type:
                # Parse HTML content
                soup = BeautifulSoup(response.content, 'html.parser')
                
                # Extract title
                title_tag = soup.find('title')
                result['title'] = title_tag.get_text().strip() if title_tag else 'No title'
                
                # Remove script and style elements
                for script in soup(["script", "style"]):
                    script.decompose()
                
                # Extract text content
                text_content = soup.get_text()
                
                # Clean up text
                lines = (line.strip() for line in text_content.splitlines())
                chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
                text_content = ' '.join(chunk for chunk in chunks if chunk)
                
                # Limit content length
                if len(text_content) > 8000:
                    text_content = text_content[:8000] + "... (truncated)"
                
                result['content'] = text_content
                
            elif 'text/plain' in content_type:
                # Handle plain text
                text_content = response.text
                if len(text_content) > 8000:
                    text_content = text_content[:8000] + "... (truncated)"
                result['content'] = text_content
                result['title'] = f"Text document from {url}"
                
            elif 'application/json' in content_type:
                # Handle JSON content
                try:
                    json_data = response.json()
                    result['content'] = json.dumps(json_data, indent=2)[:8000]
                    result['title'] = f"JSON document from {url}"
                except:
                    result['content'] = response.text[:8000]
                    result['title'] = f"JSON document from {url}"
                    
            elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']):
                # Handle document files
                result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented."
                result['title'] = f"Document from {url}"
                
            else:
                # Handle other content types
                if response.text:
                    content = response.text[:8000]
                    result['content'] = content
                    result['title'] = f"Content from {url}"
                else:
                    result['content'] = f"Non-text content detected ({content_type})"
                    result['title'] = f"File from {url}"
            
            if self.debug:
                print(f"Successfully fetched content from {url}: {len(result['content'])} characters")
            
            return result
            
        except requests.exceptions.RequestException as e:
            error_msg = f"Failed to fetch {url}: {str(e)}"
            if self.debug:
                print(error_msg)
            return {
                'url': url,
                'content_type': 'error',
                'title': f"Error fetching {url}",
                'content': '',
                'error': error_msg
            }
        except Exception as e:
            error_msg = f"Unexpected error fetching {url}: {str(e)}"
            if self.debug:
                print(error_msg)
            return {
                'url': url,
                'content_type': 'error',
                'title': f"Error fetching {url}",
                'content': '',
                'error': error_msg
            }
    
    def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]:
        """Fetch content from multiple URLs."""
        results = []
        for url in urls[:5]:  # Limit to 5 URLs to avoid excessive processing
            result = self.fetch_url_content(url)
            results.append(result)
            time.sleep(1)  # Be respectful to servers
        return results
        
def remove_thinking_tags(text):
    import re
    # Remove <think>...</think> blocks
    cleaned = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
    # Remove thinking markers
    cleaned = re.sub(r'<thinking>.*?</thinking>', '', cleaned, flags=re.DOTALL)
    return cleaned.strip()
    
# --- File Download Utility ---
def download_attachment(url: str, temp_dir: str) -> Optional[str]:
    """
    Download an attachment from URL to a temporary directory.
    Returns the local file path if successful, None otherwise.
    """
    try:
        response = requests.get(url, timeout=30)
        response.raise_for_status()
        
        # Extract filename from URL or create one based on content type
        parsed_url = urllib.parse.urlparse(url)
        filename = os.path.basename(parsed_url.path)
        
        if not filename or '.' not in filename:
            # Try to determine extension from content type
            content_type = response.headers.get('content-type', '').lower()
            if 'image' in content_type:
                if 'jpeg' in content_type or 'jpg' in content_type:
                    filename = f"attachment_{int(time.time())}.jpg"
                elif 'png' in content_type:
                    filename = f"attachment_{int(time.time())}.png"
                else:
                    filename = f"attachment_{int(time.time())}.img"
            elif 'audio' in content_type:
                if 'mp3' in content_type:
                    filename = f"attachment_{int(time.time())}.mp3"
                elif 'wav' in content_type:
                    filename = f"attachment_{int(time.time())}.wav"
                else:
                    filename = f"attachment_{int(time.time())}.audio"
            elif 'python' in content_type or 'text' in content_type:
                filename = f"attachment_{int(time.time())}.py"
            else:
                filename = f"attachment_{int(time.time())}.file"
        
        file_path = os.path.join(temp_dir, filename)
        
        with open(file_path, 'wb') as f:
            f.write(response.content)
        
        print(f"Downloaded attachment: {url} -> {file_path}")
        return file_path
        
    except Exception as e:
        print(f"Failed to download attachment {url}: {e}")
        return None

# --- Code Processing Tool ---
class CodeAnalysisTool:
    def __init__(self, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
        self.client = InferenceClient(model=model_name, provider="sambanova")
        
    def analyze_code(self, code_path: str) -> str:
        """
        Analyze Python code and return insights.
        """
        try:
            with open(code_path, 'r', encoding='utf-8') as f:
                code_content = f.read()
            
            # Limit code length for analysis
            if len(code_content) > 5000:
                code_content = code_content[:5000] + "\n... (truncated)"
            
            analysis_prompt = f"""Analyze this Python code and provide a concise summary of:
1. What the code does (main functionality)
2. Key functions/classes
3. Any notable patterns or issues
4. Input/output behavior if applicable

Code:
```python
{code_content}
```

Provide a brief, focused analysis:"""

            messages = [{"role": "user", "content": analysis_prompt}]
            response = self.client.chat_completion(
                messages=messages,
                max_tokens=500,
                temperature=0.3
            )
            
            return response.choices[0].message.content.strip()
            
        except Exception as e:
            return f"Code analysis failed: {e}"

# --- Image Processing Tool ---
class ImageAnalysisTool:
    def __init__(self, model_name: str = "microsoft/Florence-2-large"):
        self.client = InferenceClient(model=model_name)
        
    def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str:
        """
        Analyze an image and return a description.
        """
        try:
            # Open and process the image
            with open(image_path, "rb") as f:
                image_bytes = f.read()
            
            # Use the vision model to analyze the image
            response = self.client.image_to_text(
                image=image_bytes,
                model="microsoft/Florence-2-large"
            )
            
            return response.get("generated_text", "Could not analyze image")
            
        except Exception as e:
            try:
                # Fallback: use a different vision model
                response = self.client.image_to_text(
                    image=image_bytes,
                    model="Salesforce/blip-image-captioning-large"
                )
                return response.get("generated_text", f"Image analysis error: {e}")
            except:
                return f"Image analysis failed: {e}"

    def extract_text_from_image(self, image_path: str) -> str:
        """
        Extract text from an image using OCR.
        """
        try:
            with open(image_path, "rb") as f:
                image_bytes = f.read()
            
            # Use an OCR model
            response = self.client.image_to_text(
                image=image_bytes,
                model="microsoft/trocr-base-printed"
            )
            
            return response.get("generated_text", "No text found in image")
            
        except Exception as e:
            return f"OCR failed: {e}"

# --- Audio Processing Tool ---
class AudioTranscriptionTool:
    def __init__(self, model_name: str = "openai/whisper-large-v3"):
        self.client = InferenceClient(model=model_name)
        
    def transcribe_audio(self, audio_path: str) -> str:
        """
        Transcribe audio file to text.
        """
        try:
            with open(audio_path, "rb") as f:
                audio_bytes = f.read()
            
            # Use Whisper for transcription
            response = self.client.automatic_speech_recognition(
                audio=audio_bytes
            )
            
            return response.get("text", "Could not transcribe audio")
            
        except Exception as e:
            try:
                # Fallback to a different ASR model
                response = self.client.automatic_speech_recognition(
                    audio=audio_bytes,
                    model="facebook/wav2vec2-large-960h-lv60-self"
                )
                return response.get("text", f"Audio transcription error: {e}")
            except:
                return f"Audio transcription failed: {e}"

# --- Enhanced Intelligent Agent with URL Processing ---
class IntelligentAgent:
    def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
        self.search = DuckDuckGoSearchTool()
        self.client = InferenceClient(model=model_name, provider="sambanova")
        self.image_tool = ImageAnalysisTool()
        self.audio_tool = AudioTranscriptionTool()
        self.code_tool = CodeAnalysisTool(model_name)
        self.web_fetcher = WebContentFetcher(debug)
        self.debug = debug
        if self.debug:
            print(f"IntelligentAgent initialized with model: {model_name}")

    def _chat_completion(self, prompt: str, max_tokens: int = 500, temperature: float = 0.3) -> str:
        """
        Use chat completion instead of text generation to avoid provider compatibility issues.
        """
        try:
            messages = [{"role": "user", "content": prompt}]
            
            # Try chat completion first
            try:
                response = self.client.chat_completion(
                    messages=messages,
                    max_tokens=max_tokens,
                    temperature=temperature
                )
                return remove_thinking_tags(response.choices[0].message.content.strip())
            except Exception as chat_error:
                if self.debug:
                    print(f"Chat completion failed: {chat_error}, trying text generation...")
                
                # Fallback to text generation
                response = self.client.conversational(
                    prompt,
                    max_new_tokens=max_tokens,
                    temperature=temperature,
                    do_sample=temperature > 0
                )
                response = remove_thinking_tags(response.strip)
                return response.strip()
                
        except Exception as e:
            if self.debug:
                print(f"Both chat completion and text generation failed: {e}")
            raise e

    def _extract_and_process_urls(self, question_text: str) -> str:
        """
        Extract URLs from question text and fetch their content.
        Returns formatted content from all URLs.
        """
        urls = self.web_fetcher.extract_urls_from_text(question_text)
        
        if not urls:
            return ""
        
        if self.debug:
            print(f"Found {len(urls)} URLs in question: {urls}")
        
        url_contents = self.web_fetcher.fetch_multiple_urls(urls)
        
        if not url_contents:
            return ""
        
        # Format the content
        formatted_content = []
        for content_data in url_contents:
            if content_data['error']:
                formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}")
            else:
                formatted_content.append(
                    f"URL: {content_data['url']}\n"
                    f"Title: {content_data['title']}\n"
                    f"Content Type: {content_data['content_type']}\n"
                    f"Content: {content_data['content']}"
                )
        
        return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50

    def _detect_and_download_attachments(self, question_data: dict) -> Tuple[List[str], List[str], List[str]]:
        """
        Detect and download attachments from question data.
        Returns (image_files, audio_files, code_files)
        """
        image_files = []
        audio_files = []
        code_files = []
        
        # Create temporary directory for downloads
        temp_dir = tempfile.mkdtemp(prefix="agent_attachments_")
        
        # Check for attachments in various fields
        attachments = []
        
        # Common fields where attachments might be found
        attachment_fields = ['attachments', 'files', 'media', 'resources']
        
        for field in attachment_fields:
            if field in question_data:
                field_data = question_data[field]
                if isinstance(field_data, list):
                    attachments.extend(field_data)
                elif isinstance(field_data, str):
                    attachments.append(field_data)
        
        # Also check if the question text contains file URLs (not web URLs)
        question_text = question_data.get('question', '')
        if 'http' in question_text:
            # Only consider URLs that likely point to files, not web pages
            urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', question_text)
            for url in urls:
                # Check if URL likely points to a file (has file extension)
                parsed = urllib.parse.urlparse(url)
                path = parsed.path.lower()
                if any(path.endswith(ext) for ext in ['.jpg', '.jpeg', '.png', '.gif', '.mp3', '.wav', '.py', '.txt', '.pdf']):
                    attachments.append(url)
        
        # Download and categorize attachments
        for attachment in attachments:
            if isinstance(attachment, dict):
                url = attachment.get('url') or attachment.get('link') or attachment.get('file_url')
                file_type = attachment.get('type', '').lower()
            else:
                url = attachment
                file_type = ''
            
            if not url:
                continue
                
            # Download the file
            file_path = download_attachment(url, temp_dir)
            if not file_path:
                continue
            
            # Categorize based on extension or type
            file_ext = Path(file_path).suffix.lower()
            
            if file_type:
                if 'image' in file_type or file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
                    image_files.append(file_path)
                elif 'audio' in file_type or file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac']:
                    audio_files.append(file_path)
                elif 'python' in file_type or 'code' in file_type or file_ext in ['.py', '.txt']:
                    code_files.append(file_path)
            else:
                # Auto-detect based on extension
                if file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
                    image_files.append(file_path)
                elif file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac']:
                    audio_files.append(file_path)
                elif file_ext in ['.py', '.txt']:
                    code_files.append(file_path)
        
        if self.debug:
            print(f"Downloaded attachments: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files")
        
        return image_files, audio_files, code_files

    def _process_attachments(self, image_files: List[str] = None, audio_files: List[str] = None, code_files: List[str] = None) -> str:
        """
        Process all types of attachments and return their content as text.
        """
        attachment_content = []
        
        # Process code files
        if code_files:
            for code_file in code_files:
                if code_file and os.path.exists(code_file):
                    try:
                        # First, include the raw code content (truncated)
                        with open(code_file, 'r', encoding='utf-8') as f:
                            code_content = f.read()
                        
                        if len(code_content) > 1000:
                            code_preview = code_content[:1000] + "\n... (truncated)"
                        else:
                            code_preview = code_content
                        
                        attachment_content.append(f"Code File Content:\n```python\n{code_preview}\n```")
                        
                        # Then add analysis
                        code_analysis = self.code_tool.analyze_code(code_file)
                        attachment_content.append(f"Code Analysis: {code_analysis}")
                        
                    except Exception as e:
                        attachment_content.append(f"Error processing code file {code_file}: {e}")
        
        # Process images
        if image_files:
            for image_file in image_files:
                if image_file and os.path.exists(image_file):
                    try:
                        # Analyze the image
                        image_description = self.image_tool.analyze_image(image_file)
                        attachment_content.append(f"Image Analysis: {image_description}")
                        
                        # Try to extract text from image
                        extracted_text = self.image_tool.extract_text_from_image(image_file)
                        if extracted_text and "No text found" not in extracted_text:
                            attachment_content.append(f"Text from Image: {extracted_text}")
                            
                    except Exception as e:
                        attachment_content.append(f"Error processing image {image_file}: {e}")
        
        # Process audio files
        if audio_files:
            for audio_file in audio_files:
                if audio_file and os.path.exists(audio_file):
                    try:
                        # Transcribe the audio
                        transcription = self.audio_tool.transcribe_audio(audio_file)
                        attachment_content.append(f"Audio Transcription: {transcription}")
                        
                    except Exception as e:
                        attachment_content.append(f"Error processing audio {audio_file}: {e}")
        
        return "\n\n".join(attachment_content) if attachment_content else ""

    def _should_search(self, question: str, attachment_context: str = "", url_context: str = "") -> bool:
        """
        Use LLM to determine if search is needed for the question, considering attachment and URL context.
        Returns True if search is recommended, False otherwise.
        """
        decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.

SEARCH IS NEEDED for:
- Current events, news, recent developments
- Real-time data (weather, stock prices, sports scores)
- Specific factual information that changes frequently
- Recent product releases, company information
- Current status of people, organizations, or projects
- Location-specific current information

SEARCH IS NOT NEEDED for:
- General knowledge questions
- Mathematical calculations
- Programming concepts and syntax
- Historical facts (older than 1 year)
- Definitions of well-established concepts
- How-to instructions for common tasks
- Creative writing or opinion-based responses
- Questions that can be answered from attached files (code, images, audio)
- Questions that can be answered from URL content provided
- Code analysis, debugging, or explanation questions
- Questions about uploaded or linked content

Question: "{question}"

{f"Attachment Context Available: {attachment_context[:500]}..." if attachment_context else "No attachment context available."}

{f"URL Content Available: {url_context[:500]}..." if url_context else "No URL content available."}

If you cannot provide an answer, reply with "NO_SEARCH". Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).

Example responses:
- "SEARCH - Current weather data needed"
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
- "NO_SEARCH - Can be answered from attached code/image/URL content"
"""

        try:
            response = self._chat_completion(decision_prompt, max_tokens=50, temperature=0.1)
            
            decision = response.strip().upper()
            should_search = decision.startswith("SEARCH")
            time.sleep(5)
            
            if self.debug:
                print(f"Decision regarding the search: {decision}")
                
            return should_search
            
        except Exception as e:
            if self.debug:
                print(f"Error in search decision: {e}, defaulting to no search for questions with context")
            # Default to no search if decision fails and there is context available
            return len(attachment_context) == 0 and len(url_context) == 0

    def _answer_with_llm(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
        """
        Generate answer using LLM without search, considering attachment and URL context.
        """
        context_sections = []
        
        if attachment_context:
            context_sections.append(f"Attachment Context:\n{attachment_context}")
        
        if url_context:
            context_sections.append(f"URL Content:\n{url_context}")
        
        context_section = "\n\n".join(context_sections) if context_sections else ""
        
        answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question. 
        YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. 
        If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. 
        If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
        If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. 
        Do not add a dot after the numbers.
        Do not report on your thoughts. Do not provide explanations.
{context_section}

Question: {question}

Answer:"""

        try:
            response = self._chat_completion(answer_prompt, max_tokens=500, temperature=0.3)
            response = remove_thinking_tags(response)
            return response
            
        except Exception as e:
            return f"Sorry, I encountered an error generating the response: {e}"

    def _answer_with_search(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
        """
        Generate answer using search results and LLM, considering attachment and URL context.
        """
        try:
            # Perform search
            time.sleep(10)
            search_results = self.search(question)
            
            #if self.debug:
            #    print(f"Search results type: {type(search_results)}")
            
            if not search_results:
                return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)

            # Format search results - handle different result formats
            if isinstance(search_results, str):
                search_context = search_results
            else:
                # Handle list of results
                formatted_results = []
                for i, result in enumerate(search_results[:3]):  # Use top 3 results
                    if isinstance(result, dict):
                        title = result.get("title", "No title")
                        snippet = result.get("snippet", "").strip()
                        link = result.get("link", "")
                        formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}")
                    elif isinstance(result, str):
                        formatted_results.append(result)
                    else:
                        formatted_results.append(str(result))
                
                search_context = "\n\n".join(formatted_results)
                

            # Generate answer using search context, attachment context, and URL context
            context_sections = [f"Search Results:\n{search_context}"]
            
            if attachment_context:
                context_sections.append(f"Attachment Context:\n{attachment_context}")
            
            if url_context:
                context_sections.append(f"URL Content:\n{url_context}")
            
            full_context = "\n\n".join(context_sections)

            if self.debug:
               print(f"Full context: {full_context}")
            
            
            answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question. 
            Based on the search results and the context sections below, provide an answer to the question. 
            If the search results don't fully answer the question, you can supplement with information from other context sections or your general knowledge. 
            Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. 
            Do not add dot if your answer is a number.
            If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
            If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. 
            If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
            Do not report on your thoughts. Do not provide explanations.

Question: {question}

{full_context}

Answer:"""

            try:
                response = self._chat_completion(answer_prompt, max_tokens=600, temperature=0.3)
                response = remove_thinking_tags(response)
                return response
                
            except Exception as e:
                if self.debug:
                    print(f"LLM generation error: {e}")
                # Fallback to simple search result formatting
                if search_results:
                    if isinstance(search_results, str):
                        return search_results
                    elif isinstance(search_results, list) and len(search_results) > 0:
                        first_result = search_results[0]
                        if isinstance(first_result, dict):
                            title = first_result.get("title", "Search Result")
                            snippet = first_result.get("snippet", "").strip()
                            link = first_result.get("link", "")
                            return f"**{title}**\n\n{snippet}\n\n{f'Source: {link}' if link else ''}"
                        else:
                            return str(first_result)
                    else:
                        return str(search_results)
                else:
                    return "Search completed but no usable results found."

        except Exception as e:
            return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)

    def process_question_with_attachments(self, question_data: dict) -> str:
        """
        Process a question that may have attachments and URLs.
        """
        question_text = question_data.get('question', '')
        
        if self.debug:
            print(f"Processing question with potential attachments and URLs: {question_text[:100]}...")

        try:
            # Detect and download attachments
            image_files, audio_files, code_files = self._detect_and_download_attachments(question_data)
            
            # Process attachments to get context
            attachment_context = self._process_attachments(image_files, audio_files, code_files)
            
            if self.debug and attachment_context:
                print(f"Attachment context: {attachment_context[:800]}...")

            # Decide whether to search
            if self._should_search(question_text, attachment_context):
                if self.debug:
                    print("Using search-based approach")
                answer = self._answer_with_search(question_text, attachment_context)
                answer = remove_thinking_tags(answer)
            else:
                if self.debug:
                    print("Using LLM-only approach")
                answer = self._answer_with_llm(question_text, attachment_context)
                print("here")
                print(answer)
                answer = remove_thinking_tags(answer)
                print(answer)
            # Cleanup temporary files
            if image_files or audio_files or code_files:
                try:
                    all_files = image_files + audio_files + code_files
                    temp_dirs = set(os.path.dirname(f) for f in all_files)
                    for temp_dir in temp_dirs:
                        import shutil
                        shutil.rmtree(temp_dir, ignore_errors=True)
                except Exception as cleanup_error:
                    if self.debug:
                        print(f"Cleanup error: {cleanup_error}")

        except Exception as e:
            answer = f"Sorry, I encountered an error: {e}"

        if self.debug:
            print(f"Agent returning answer: {answer[:100]}...")
        answer = remove_thinking_tags(answer)
        return answer

    def __call__(self, question: str, image_files: List[str] = None, audio_files: List[str] = None) -> str:
        """
        Main entry point for manual testing - process media files and generate response.
        """
        if self.debug:
            print(f"Agent received question: {question}")
            print(f"Image files: {image_files}")
            print(f"Audio files: {audio_files}")

        # Early validation
        if not question or not question.strip():
            return "Please provide a valid question."

        try:
            # Process media files first
            attachment_context = self._process_attachments(image_files, audio_files, [])
            
            if self.debug and attachment_context:
                print(f"Media context: {attachment_context[:200]}...")

            # Decide whether to search
            if self._should_search(question, attachment_context):
                if self.debug:
                    print("Using search-based approach")
                answer = self._answer_with_search(question, attachment_context)
                answer = remove_thinking_tags(answer)
            else:
                if self.debug:
                    print("Using LLM-only approach")
                answer = self._answer_with_llm(question, attachment_context)
                answer = remove_thinking_tags(answer)
        except Exception as e:
            answer = f"Sorry, I encountered an error: {e}"

        if self.debug:
            print(f"Agent returning answer: {answer[:100]}...")
        answer = remove_thinking_tags(answer)
        return answer

def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
    """
    Fetch questions from the API and cache them.
    """
    global cached_questions
    
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        
        if not questions_data:
            return "Fetched questions list is empty.", None
            
        cached_questions = questions_data
        
        # Create DataFrame for display
        display_data = []
        for item in questions_data:
            # Check for attachments
            has_attachments = False
            attachment_info = ""
            
            # Check various fields for attachments
            attachment_fields = ['attachments', 'files', 'media', 'resources']
            for field in attachment_fields:
                if field in item and item[field]:
                    has_attachments = True
                    if isinstance(item[field], list):
                        attachment_info += f"{len(item[field])} {field}, "
                    else:
                        attachment_info += f"{field}, "
            
            # Check if question contains URLs
            question_text = item.get("question", "")
            if 'http' in question_text:
                has_attachments = True
                attachment_info += "URLs in text, "
            
            if attachment_info:
                attachment_info = attachment_info.rstrip(", ")
            
            display_data.append({
                "Task ID": item.get("task_id", "Unknown"),
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Has Attachments": "Yes" if has_attachments else "No",
                "Attachment Info": attachment_info
            })
        
        df = pd.DataFrame(display_data)
        
        attachment_count = sum(1 for item in display_data if item["Has Attachments"] == "Yes")
        status_msg = f"Successfully fetched {len(questions_data)} questions. {attachment_count} questions have attachments. Ready to generate answers."
        
        return status_msg, df
        
    except requests.exceptions.RequestException as e:
        return f"Error fetching questions: {e}", None
    except Exception as e:
        return f"An unexpected error occurred: {e}", None

def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct", progress_callback=None):
    """
    Generate answers for all cached questions asynchronously using the intelligent agent.
    """
    global cached_answers, processing_status
    
    if not cached_questions:
        return "No questions available. Please fetch questions first."
    
    processing_status["is_processing"] = True
    processing_status["progress"] = 0
    processing_status["total"] = len(cached_questions)
    
    try:
        agent = IntelligentAgent(debug=True, model_name=model_name)
        cached_answers = {}
        
        for i, question_data in enumerate(cached_questions):
            if not processing_status["is_processing"]:  # Check if cancelled
                break
                
            task_id = question_data.get("task_id")
            question_text = question_data.get("question")
            
            if not task_id or question_text is None:
                continue
                
            try:
                # Use the new method that handles attachments
                answer = agent.process_question_with_attachments(question_data)
                answer = remove_thinking_tags(answer)
                cached_answers[task_id] = {
                    "question": question_text,
                    "answer": answer
                }
            except Exception as e:
                cached_answers[task_id] = {
                    "question": question_text,
                    "answer": f"AGENT ERROR: {e}"
                }
            
            processing_status["progress"] = i + 1
            if progress_callback:
                progress_callback(i + 1, len(cached_questions))
                
    except Exception as e:
        print(f"Error in generate_answers_async: {e}")
    finally:
        processing_status["is_processing"] = False

def start_answer_generation(model_choice: str):
    """
    Start the answer generation process in a separate thread.
    """
    if processing_status["is_processing"]:
        return "Answer generation is already in progress."
    
    if not cached_questions:
        return "No questions available. Please fetch questions first."
    
    # Map model choice to actual model name
    model_map = {
        "Llama 3.1 8B": "meta-llama/Llama-3.1-8B-Instruct",
        "Llama 3.3 70B": "meta-llama/Llama-3.3-70B-Instruct",
        "Llama shallow": "tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4",
        "Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
        "Qwen 2.5": "Qwen/Qwen‑2.5‑Omni‑7B",
        #"Qwen 2.5 instruct": "Qwen/Qwen2.5-14B-Instruct-1M",
        "Qwen 3": "Qwen/Qwen3-32B"
        
    }
    
    selected_model = model_map.get(model_choice, "meta-llama/Llama-3.1-8B-Instruct")
    
    # Start generation in background thread
    thread = threading.Thread(target=generate_answers_async, args=(selected_model,))
    thread.daemon = True
    thread.start()
    
    return f"Answer generation started using {model_choice}. Check progress."

   
def get_generation_progress():
    """
    Get the current progress of answer generation.
    """
    if not processing_status["is_processing"] and processing_status["progress"] == 0:
        return "Not started"
    
    if processing_status["is_processing"]:
        progress = processing_status["progress"]
        total = processing_status["total"]
        status_msg = f"Generating answers... {progress}/{total} completed"
        return status_msg
    else:
        # Generation completed
        if cached_answers:
            # Create DataFrame with results
            display_data = []
            for task_id, data in cached_answers.items():
                display_data.append({
                    "Task ID": task_id,
                    "Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
                    "Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
                })
            
            df = pd.DataFrame(display_data)
            status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
            return status_msg, df
        else:
            return "Answer generation completed but no answers were generated."

def submit_cached_answers(profile: gr.OAuthProfile | None):
    """
    Submit the cached answers to the evaluation API.
    """
    global cached_answers
    
    if not profile:
        return "Please log in to Hugging Face first.", None
    
    if not cached_answers:
        return "No cached answers available. Please generate answers first.", None
    
    username = profile.username
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
    
    # Prepare submission payload
    answers_payload = []
    for task_id, data in cached_answers.items():
        answers_payload.append({
            "task_id": task_id,
            "submitted_answer": data["answer"]
        })
    
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    
    # Submit to API
    api_url = DEFAULT_API_URL
    submit_url = f"{api_url}/submit"
    
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        
        # Create results DataFrame
        results_log = []
        for task_id, data in cached_answers.items():
            results_log.append({
                "Task ID": task_id,
                "Question": data["question"],
                "Submitted Answer": data["answer"]
            })
        
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except:
            error_detail += f" Response: {e.response.text[:500]}"
        return f"Submission Failed: {error_detail}", None
        
    except requests.exceptions.Timeout:
        return "Submission Failed: The request timed out.", None
        
    except Exception as e:
        return f"Submission Failed: {e}", None

def clear_cache():
    """
    Clear all cached data.
    """
    global cached_answers, cached_questions, processing_status
    cached_answers = {}
    cached_questions = []
    processing_status = {"is_processing": False, "progress": 0, "total": 0}
    return "Cache cleared successfully.", None

# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Intelligent Agent with Media Processing") as demo:
    gr.Markdown("# Intelligent Agent with Conditional Search and Media Processing")
    gr.Markdown("This agent can process images and audio files, uses an LLM to decide when search is needed, optimizing for both accuracy and efficiency.")

    with gr.Row():
        gr.LoginButton()
        clear_btn = gr.Button("Clear Cache", variant="secondary")

    with gr.Tab("Step 1: Fetch Questions"):
        gr.Markdown("### Fetch Questions from API")
        fetch_btn = gr.Button("Fetch Questions", variant="primary")
        fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
        questions_table = gr.DataFrame(label="Available Questions", wrap=True)
        
        fetch_btn.click(
            fn=fetch_questions,
            outputs=[fetch_status, questions_table]
        )

    with gr.Tab("Step 2: Generate Answers"):
        gr.Markdown("### Generate Answers with Intelligent Search Decision")
        
        with gr.Row():
            model_choice = gr.Dropdown(
                choices=["Llama 3.1 8B", "Llama 3.3 70B", "Llama shallow", "Mistral 7B", "Qwen 2.5", "Qwen 3"],
                value="Llama 3.1 8B",
                label="Select Model"
            )
            generate_btn = gr.Button("Start Answer Generation", variant="primary")
            refresh_btn = gr.Button("Refresh Progress", variant="secondary")
        
        generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
        answers_table = gr.DataFrame(label="Generated Answers", wrap=True)
        
        generate_btn.click(
            fn=start_answer_generation,
            inputs=[model_choice],
            outputs=generation_status
        )
        
        refresh_btn.click(
            fn=get_generation_progress,
            outputs=[generation_status, answers_table]
        )

    with gr.Tab("Step 3: Submit Results"):
        gr.Markdown("### Submit Generated Answers")
        submit_btn = gr.Button("Submit Answers", variant="primary")
        submit_status = gr.Textbox(label="Submission Status", lines=4, interactive=False)
        results_table = gr.DataFrame(label="Submission Results", wrap=True)
        
        submit_btn.click(
            fn=submit_cached_answers,
            outputs=[submit_status, results_table]
        )

    
    # Clear cache functionality
    clear_btn.click(
        fn=clear_cache,
        outputs=[fetch_status, questions_table]
    )

if __name__ ==  "__main__":
    demo.launch()