Spaces:
Sleeping
Sleeping
File size: 48,791 Bytes
10e9b7d eccf8e4 7d65c66 620f572 3c4371f c275bbd 3164d5a 430ca10 3164d5a 7067f57 430ca10 5cd098a 958c53e 3164d5a e80aab9 3db6293 e80aab9 3164d5a 8b49454 958c53e 9a0d5a4 5cd098a 029d654 5cd098a 430ca10 958c53e 61401c1 c5b02db c275bbd 430ca10 5cd098a 958c53e 8b49454 61401c1 f6609f5 9a0d5a4 f6609f5 029d654 f6609f5 02c1d91 f6609f5 029d654 f6609f5 958c53e 5cd098a 958c53e 5cd098a 958c53e 5cd098a 958c53e 5cd098a 430ca10 5cd098a 430ca10 5cd098a 430ca10 5cd098a 430ca10 5cd098a 430ca10 5cd098a 430ca10 5cd098a 430ca10 5cd098a 430ca10 5cd098a 430ca10 958c53e 61401c1 958c53e 61401c1 f6609f5 1b2a135 5cd098a 958c53e 5cd098a 958c53e 1b2a135 5cd098a 87f7811 958c53e 6d1254f 1b2a135 958c53e 1b2a135 f6609f5 1b2a135 d8e55a1 1b2a135 bddeb43 1b2a135 958c53e 1b2a135 958c53e 1b2a135 958c53e 1b2a135 958c53e 87f7811 02492a1 48cda19 6d1254f 87f7811 1b2a135 5f7d476 f6609f5 1b2a135 958c53e 1b2a135 958c53e 1b2a135 10d25e1 1b2a135 0a26b0c 291f4f8 1b2a135 958c53e 1b2a135 291f4f8 e73a565 1b2a135 e73a565 0a26b0c 1b2a135 958c53e 0a26b0c 87f7811 02492a1 958c53e 48cda19 6d1254f 87f7811 1b2a135 958c53e 87f7811 1b2a135 f6609f5 60bc822 f6609f5 1b2a135 e73a565 1b2a135 e73a565 291f4f8 e73a565 291f4f8 1b2a135 958c53e 5cd098a 958c53e 5cd098a 958c53e 5cd098a ad1e474 5cd098a bffa900 5cd098a 10f6873 bffa900 10f6873 5cd098a 4e3bcb5 5cd098a 1b2a135 87f7811 1b2a135 5cd098a 1b2a135 87f7811 1b2a135 87f7811 5cd098a 87f7811 5cd098a 87f7811 1b2a135 5cd098a 1b2a135 5cd098a 4f205dc 1b2a135 5cd098a 4f205dc 1b2a135 4e3bcb5 1b2a135 5cd098a 1b2a135 5cd098a 1b2a135 5cd098a 1b2a135 5cd098a 1b2a135 5cd098a 1b2a135 5cd098a 21ff4f2 1b2a135 440630e 1b2a135 440630e 1b2a135 9c5a793 33299b0 a414e9c 33299b0 a414e9c 1b2a135 440630e 5cd098a 37deecf 1b2a135 37deecf 9889802 37deecf 33299b0 37deecf b7656ca 37deecf b7656ca 37deecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 |
import os
import gradio as gr
import requests
import inspect
import time
import pandas as pd
from smolagents import DuckDuckGoSearchTool
import threading
from typing import Dict, List, Optional, Tuple, Union
import json
from huggingface_hub import InferenceClient
import base64
from PIL import Image
import io
import tempfile
import urllib.parse
from pathlib import Path
import re
from bs4 import BeautifulSoup
import mimetypes
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Global Cache for Answers ---
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
# --- Web Content Fetcher ---
class WebContentFetcher:
def __init__(self, debug: bool = True):
self.debug = debug
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
})
def extract_urls_from_text(self, text: str) -> List[str]:
"""Extract URLs from text using regex."""
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
urls = re.findall(url_pattern, text)
return list(set(urls)) # Remove duplicates
def fetch_url_content(self, url: str) -> Dict[str, str]:
"""
Fetch content from a URL and extract text, handling different content types.
Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys.
"""
try:
# Clean the URL
url = url.strip()
if not url.startswith(('http://', 'https://')):
url = 'https://' + url
if self.debug:
print(f"Fetching URL: {url}")
response = self.session.get(url, timeout=30, allow_redirects=True)
response.raise_for_status()
content_type = response.headers.get('content-type', '').lower()
result = {
'url': url,
'content_type': content_type,
'title': '',
'content': '',
'error': None
}
# Handle different content types
if 'text/html' in content_type:
# Parse HTML content
soup = BeautifulSoup(response.content, 'html.parser')
# Extract title
title_tag = soup.find('title')
result['title'] = title_tag.get_text().strip() if title_tag else 'No title'
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Extract text content
text_content = soup.get_text()
# Clean up text
lines = (line.strip() for line in text_content.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text_content = ' '.join(chunk for chunk in chunks if chunk)
# Limit content length
if len(text_content) > 8000:
text_content = text_content[:8000] + "... (truncated)"
result['content'] = text_content
elif 'text/plain' in content_type:
# Handle plain text
text_content = response.text
if len(text_content) > 8000:
text_content = text_content[:8000] + "... (truncated)"
result['content'] = text_content
result['title'] = f"Text document from {url}"
elif 'application/json' in content_type:
# Handle JSON content
try:
json_data = response.json()
result['content'] = json.dumps(json_data, indent=2)[:8000]
result['title'] = f"JSON document from {url}"
except:
result['content'] = response.text[:8000]
result['title'] = f"JSON document from {url}"
elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']):
# Handle document files
result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented."
result['title'] = f"Document from {url}"
else:
# Handle other content types
if response.text:
content = response.text[:8000]
result['content'] = content
result['title'] = f"Content from {url}"
else:
result['content'] = f"Non-text content detected ({content_type})"
result['title'] = f"File from {url}"
if self.debug:
print(f"Successfully fetched content from {url}: {len(result['content'])} characters")
return result
except requests.exceptions.RequestException as e:
error_msg = f"Failed to fetch {url}: {str(e)}"
if self.debug:
print(error_msg)
return {
'url': url,
'content_type': 'error',
'title': f"Error fetching {url}",
'content': '',
'error': error_msg
}
except Exception as e:
error_msg = f"Unexpected error fetching {url}: {str(e)}"
if self.debug:
print(error_msg)
return {
'url': url,
'content_type': 'error',
'title': f"Error fetching {url}",
'content': '',
'error': error_msg
}
def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]:
"""Fetch content from multiple URLs."""
results = []
for url in urls[:5]: # Limit to 5 URLs to avoid excessive processing
result = self.fetch_url_content(url)
results.append(result)
time.sleep(1) # Be respectful to servers
return results
def remove_thinking_tags(text):
import re
# Remove <think>...</think> blocks
cleaned = re.sub(r'<think>.*?</think>', '', text, flags=re.DOTALL)
# Remove thinking markers
cleaned = re.sub(r'<thinking>.*?</thinking>', '', cleaned, flags=re.DOTALL)
return cleaned.strip()
# --- File Download Utility ---
def download_attachment(url: str, temp_dir: str) -> Optional[str]:
"""
Download an attachment from URL to a temporary directory.
Returns the local file path if successful, None otherwise.
"""
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
# Extract filename from URL or create one based on content type
parsed_url = urllib.parse.urlparse(url)
filename = os.path.basename(parsed_url.path)
if not filename or '.' not in filename:
# Try to determine extension from content type
content_type = response.headers.get('content-type', '').lower()
if 'image' in content_type:
if 'jpeg' in content_type or 'jpg' in content_type:
filename = f"attachment_{int(time.time())}.jpg"
elif 'png' in content_type:
filename = f"attachment_{int(time.time())}.png"
else:
filename = f"attachment_{int(time.time())}.img"
elif 'audio' in content_type:
if 'mp3' in content_type:
filename = f"attachment_{int(time.time())}.mp3"
elif 'wav' in content_type:
filename = f"attachment_{int(time.time())}.wav"
else:
filename = f"attachment_{int(time.time())}.audio"
elif 'python' in content_type or 'text' in content_type:
filename = f"attachment_{int(time.time())}.py"
else:
filename = f"attachment_{int(time.time())}.file"
file_path = os.path.join(temp_dir, filename)
with open(file_path, 'wb') as f:
f.write(response.content)
print(f"Downloaded attachment: {url} -> {file_path}")
return file_path
except Exception as e:
print(f"Failed to download attachment {url}: {e}")
return None
# --- Code Processing Tool ---
class CodeAnalysisTool:
def __init__(self, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
self.client = InferenceClient(model=model_name, provider="sambanova")
def analyze_code(self, code_path: str) -> str:
"""
Analyze Python code and return insights.
"""
try:
with open(code_path, 'r', encoding='utf-8') as f:
code_content = f.read()
# Limit code length for analysis
if len(code_content) > 5000:
code_content = code_content[:5000] + "\n... (truncated)"
analysis_prompt = f"""Analyze this Python code and provide a concise summary of:
1. What the code does (main functionality)
2. Key functions/classes
3. Any notable patterns or issues
4. Input/output behavior if applicable
Code:
```python
{code_content}
```
Provide a brief, focused analysis:"""
messages = [{"role": "user", "content": analysis_prompt}]
response = self.client.chat_completion(
messages=messages,
max_tokens=500,
temperature=0.3
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Code analysis failed: {e}"
# --- Image Processing Tool ---
class ImageAnalysisTool:
def __init__(self, model_name: str = "microsoft/Florence-2-large"):
self.client = InferenceClient(model=model_name)
def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str:
"""
Analyze an image and return a description.
"""
try:
# Open and process the image
with open(image_path, "rb") as f:
image_bytes = f.read()
# Use the vision model to analyze the image
response = self.client.image_to_text(
image=image_bytes,
model="microsoft/Florence-2-large"
)
return response.get("generated_text", "Could not analyze image")
except Exception as e:
try:
# Fallback: use a different vision model
response = self.client.image_to_text(
image=image_bytes,
model="Salesforce/blip-image-captioning-large"
)
return response.get("generated_text", f"Image analysis error: {e}")
except:
return f"Image analysis failed: {e}"
def extract_text_from_image(self, image_path: str) -> str:
"""
Extract text from an image using OCR.
"""
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
# Use an OCR model
response = self.client.image_to_text(
image=image_bytes,
model="microsoft/trocr-base-printed"
)
return response.get("generated_text", "No text found in image")
except Exception as e:
return f"OCR failed: {e}"
# --- Audio Processing Tool ---
class AudioTranscriptionTool:
def __init__(self, model_name: str = "openai/whisper-large-v3"):
self.client = InferenceClient(model=model_name)
def transcribe_audio(self, audio_path: str) -> str:
"""
Transcribe audio file to text.
"""
try:
with open(audio_path, "rb") as f:
audio_bytes = f.read()
# Use Whisper for transcription
response = self.client.automatic_speech_recognition(
audio=audio_bytes
)
return response.get("text", "Could not transcribe audio")
except Exception as e:
try:
# Fallback to a different ASR model
response = self.client.automatic_speech_recognition(
audio=audio_bytes,
model="facebook/wav2vec2-large-960h-lv60-self"
)
return response.get("text", f"Audio transcription error: {e}")
except:
return f"Audio transcription failed: {e}"
# --- Enhanced Intelligent Agent with URL Processing ---
class IntelligentAgent:
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
self.search = DuckDuckGoSearchTool()
self.client = InferenceClient(model=model_name, provider="sambanova")
self.image_tool = ImageAnalysisTool()
self.audio_tool = AudioTranscriptionTool()
self.code_tool = CodeAnalysisTool(model_name)
self.web_fetcher = WebContentFetcher(debug)
self.debug = debug
if self.debug:
print(f"IntelligentAgent initialized with model: {model_name}")
def _chat_completion(self, prompt: str, max_tokens: int = 500, temperature: float = 0.3) -> str:
"""
Use chat completion instead of text generation to avoid provider compatibility issues.
"""
try:
messages = [{"role": "user", "content": prompt}]
# Try chat completion first
try:
response = self.client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return remove_thinking_tags(response.choices[0].message.content.strip())
except Exception as chat_error:
if self.debug:
print(f"Chat completion failed: {chat_error}, trying text generation...")
# Fallback to text generation
response = self.client.conversational(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=temperature > 0
)
response = remove_thinking_tags(response.strip)
return response.strip()
except Exception as e:
if self.debug:
print(f"Both chat completion and text generation failed: {e}")
raise e
def _extract_and_process_urls(self, question_text: str) -> str:
"""
Extract URLs from question text and fetch their content.
Returns formatted content from all URLs.
"""
urls = self.web_fetcher.extract_urls_from_text(question_text)
if not urls:
return ""
if self.debug:
print(f"Found {len(urls)} URLs in question: {urls}")
url_contents = self.web_fetcher.fetch_multiple_urls(urls)
if not url_contents:
return ""
# Format the content
formatted_content = []
for content_data in url_contents:
if content_data['error']:
formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}")
else:
formatted_content.append(
f"URL: {content_data['url']}\n"
f"Title: {content_data['title']}\n"
f"Content Type: {content_data['content_type']}\n"
f"Content: {content_data['content']}"
)
return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50
def _detect_and_download_attachments(self, question_data: dict) -> Tuple[List[str], List[str], List[str]]:
"""
Detect and download attachments from question data.
Returns (image_files, audio_files, code_files)
"""
image_files = []
audio_files = []
code_files = []
# Create temporary directory for downloads
temp_dir = tempfile.mkdtemp(prefix="agent_attachments_")
# Check for attachments in various fields
attachments = []
# Common fields where attachments might be found
attachment_fields = ['attachments', 'files', 'media', 'resources']
for field in attachment_fields:
if field in question_data:
field_data = question_data[field]
if isinstance(field_data, list):
attachments.extend(field_data)
elif isinstance(field_data, str):
attachments.append(field_data)
# Also check if the question text contains file URLs (not web URLs)
question_text = question_data.get('question', '')
if 'http' in question_text:
# Only consider URLs that likely point to files, not web pages
urls = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', question_text)
for url in urls:
# Check if URL likely points to a file (has file extension)
parsed = urllib.parse.urlparse(url)
path = parsed.path.lower()
if any(path.endswith(ext) for ext in ['.jpg', '.jpeg', '.png', '.gif', '.mp3', '.wav', '.py', '.txt', '.pdf']):
attachments.append(url)
# Download and categorize attachments
for attachment in attachments:
if isinstance(attachment, dict):
url = attachment.get('url') or attachment.get('link') or attachment.get('file_url')
file_type = attachment.get('type', '').lower()
else:
url = attachment
file_type = ''
if not url:
continue
# Download the file
file_path = download_attachment(url, temp_dir)
if not file_path:
continue
# Categorize based on extension or type
file_ext = Path(file_path).suffix.lower()
if file_type:
if 'image' in file_type or file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
image_files.append(file_path)
elif 'audio' in file_type or file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac']:
audio_files.append(file_path)
elif 'python' in file_type or 'code' in file_type or file_ext in ['.py', '.txt']:
code_files.append(file_path)
else:
# Auto-detect based on extension
if file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
image_files.append(file_path)
elif file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac']:
audio_files.append(file_path)
elif file_ext in ['.py', '.txt']:
code_files.append(file_path)
if self.debug:
print(f"Downloaded attachments: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files")
return image_files, audio_files, code_files
def _process_attachments(self, image_files: List[str] = None, audio_files: List[str] = None, code_files: List[str] = None) -> str:
"""
Process all types of attachments and return their content as text.
"""
attachment_content = []
# Process code files
if code_files:
for code_file in code_files:
if code_file and os.path.exists(code_file):
try:
# First, include the raw code content (truncated)
with open(code_file, 'r', encoding='utf-8') as f:
code_content = f.read()
if len(code_content) > 1000:
code_preview = code_content[:1000] + "\n... (truncated)"
else:
code_preview = code_content
attachment_content.append(f"Code File Content:\n```python\n{code_preview}\n```")
# Then add analysis
code_analysis = self.code_tool.analyze_code(code_file)
attachment_content.append(f"Code Analysis: {code_analysis}")
except Exception as e:
attachment_content.append(f"Error processing code file {code_file}: {e}")
# Process images
if image_files:
for image_file in image_files:
if image_file and os.path.exists(image_file):
try:
# Analyze the image
image_description = self.image_tool.analyze_image(image_file)
attachment_content.append(f"Image Analysis: {image_description}")
# Try to extract text from image
extracted_text = self.image_tool.extract_text_from_image(image_file)
if extracted_text and "No text found" not in extracted_text:
attachment_content.append(f"Text from Image: {extracted_text}")
except Exception as e:
attachment_content.append(f"Error processing image {image_file}: {e}")
# Process audio files
if audio_files:
for audio_file in audio_files:
if audio_file and os.path.exists(audio_file):
try:
# Transcribe the audio
transcription = self.audio_tool.transcribe_audio(audio_file)
attachment_content.append(f"Audio Transcription: {transcription}")
except Exception as e:
attachment_content.append(f"Error processing audio {audio_file}: {e}")
return "\n\n".join(attachment_content) if attachment_content else ""
def _should_search(self, question: str, attachment_context: str = "", url_context: str = "") -> bool:
"""
Use LLM to determine if search is needed for the question, considering attachment and URL context.
Returns True if search is recommended, False otherwise.
"""
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
SEARCH IS NEEDED for:
- Current events, news, recent developments
- Real-time data (weather, stock prices, sports scores)
- Specific factual information that changes frequently
- Recent product releases, company information
- Current status of people, organizations, or projects
- Location-specific current information
SEARCH IS NOT NEEDED for:
- General knowledge questions
- Mathematical calculations
- Programming concepts and syntax
- Historical facts (older than 1 year)
- Definitions of well-established concepts
- How-to instructions for common tasks
- Creative writing or opinion-based responses
- Questions that can be answered from attached files (code, images, audio)
- Questions that can be answered from URL content provided
- Code analysis, debugging, or explanation questions
- Questions about uploaded or linked content
Question: "{question}"
{f"Attachment Context Available: {attachment_context[:500]}..." if attachment_context else "No attachment context available."}
{f"URL Content Available: {url_context[:500]}..." if url_context else "No URL content available."}
If you cannot provide an answer, reply with "NO_SEARCH". Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
Example responses:
- "SEARCH - Current weather data needed"
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
- "NO_SEARCH - Can be answered from attached code/image/URL content"
"""
try:
response = self._chat_completion(decision_prompt, max_tokens=50, temperature=0.1)
decision = response.strip().upper()
should_search = decision.startswith("SEARCH")
time.sleep(5)
if self.debug:
print(f"Decision regarding the search: {decision}")
return should_search
except Exception as e:
if self.debug:
print(f"Error in search decision: {e}, defaulting to no search for questions with context")
# Default to no search if decision fails and there is context available
return len(attachment_context) == 0 and len(url_context) == 0
def _answer_with_llm(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
"""
Generate answer using LLM without search, considering attachment and URL context.
"""
context_sections = []
if attachment_context:
context_sections.append(f"Attachment Context:\n{attachment_context}")
if url_context:
context_sections.append(f"URL Content:\n{url_context}")
context_section = "\n\n".join(context_sections) if context_sections else ""
answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question.
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Do not add a dot after the numbers.
Do not report on your thoughts. Do not provide explanations.
{context_section}
Question: {question}
Answer:"""
try:
response = self._chat_completion(answer_prompt, max_tokens=500, temperature=0.3)
response = remove_thinking_tags(response)
return response
except Exception as e:
return f"Sorry, I encountered an error generating the response: {e}"
def _answer_with_search(self, question: str, attachment_context: str = "", url_context: str = "") -> str:
"""
Generate answer using search results and LLM, considering attachment and URL context.
"""
try:
# Perform search
time.sleep(10)
search_results = self.search(question)
#if self.debug:
# print(f"Search results type: {type(search_results)}")
if not search_results:
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
# Format search results - handle different result formats
if isinstance(search_results, str):
search_context = search_results
else:
# Handle list of results
formatted_results = []
for i, result in enumerate(search_results[:3]): # Use top 3 results
if isinstance(result, dict):
title = result.get("title", "No title")
snippet = result.get("snippet", "").strip()
link = result.get("link", "")
formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}")
elif isinstance(result, str):
formatted_results.append(result)
else:
formatted_results.append(str(result))
search_context = "\n\n".join(formatted_results)
# Generate answer using search context, attachment context, and URL context
context_sections = [f"Search Results:\n{search_context}"]
if attachment_context:
context_sections.append(f"Attachment Context:\n{attachment_context}")
if url_context:
context_sections.append(f"URL Content:\n{url_context}")
full_context = "\n\n".join(context_sections)
if self.debug:
print(f"Full context: {full_context}")
answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question.
Based on the search results and the context sections below, provide an answer to the question.
If the search results don't fully answer the question, you can supplement with information from other context sections or your general knowledge.
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
Do not add dot if your answer is a number.
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Do not report on your thoughts. Do not provide explanations.
Question: {question}
{full_context}
Answer:"""
try:
response = self._chat_completion(answer_prompt, max_tokens=600, temperature=0.3)
response = remove_thinking_tags(response)
return response
except Exception as e:
if self.debug:
print(f"LLM generation error: {e}")
# Fallback to simple search result formatting
if search_results:
if isinstance(search_results, str):
return search_results
elif isinstance(search_results, list) and len(search_results) > 0:
first_result = search_results[0]
if isinstance(first_result, dict):
title = first_result.get("title", "Search Result")
snippet = first_result.get("snippet", "").strip()
link = first_result.get("link", "")
return f"**{title}**\n\n{snippet}\n\n{f'Source: {link}' if link else ''}"
else:
return str(first_result)
else:
return str(search_results)
else:
return "Search completed but no usable results found."
except Exception as e:
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, attachment_context, url_context)
def process_question_with_attachments(self, question_data: dict) -> str:
"""
Process a question that may have attachments and URLs.
"""
question_text = question_data.get('question', '')
if self.debug:
print(f"Processing question with potential attachments and URLs: {question_text[:100]}...")
try:
# Detect and download attachments
image_files, audio_files, code_files = self._detect_and_download_attachments(question_data)
# Process attachments to get context
attachment_context = self._process_attachments(image_files, audio_files, code_files)
if self.debug and attachment_context:
print(f"Attachment context: {attachment_context[:800]}...")
# Decide whether to search
if self._should_search(question_text, attachment_context):
if self.debug:
print("Using search-based approach")
answer = self._answer_with_search(question_text, attachment_context)
answer = remove_thinking_tags(answer)
else:
if self.debug:
print("Using LLM-only approach")
answer = self._answer_with_llm(question_text, attachment_context)
print("here")
print(answer)
answer = remove_thinking_tags(answer)
print(answer)
# Cleanup temporary files
if image_files or audio_files or code_files:
try:
all_files = image_files + audio_files + code_files
temp_dirs = set(os.path.dirname(f) for f in all_files)
for temp_dir in temp_dirs:
import shutil
shutil.rmtree(temp_dir, ignore_errors=True)
except Exception as cleanup_error:
if self.debug:
print(f"Cleanup error: {cleanup_error}")
except Exception as e:
answer = f"Sorry, I encountered an error: {e}"
if self.debug:
print(f"Agent returning answer: {answer[:100]}...")
answer = remove_thinking_tags(answer)
return answer
def __call__(self, question: str, image_files: List[str] = None, audio_files: List[str] = None) -> str:
"""
Main entry point for manual testing - process media files and generate response.
"""
if self.debug:
print(f"Agent received question: {question}")
print(f"Image files: {image_files}")
print(f"Audio files: {audio_files}")
# Early validation
if not question or not question.strip():
return "Please provide a valid question."
try:
# Process media files first
attachment_context = self._process_attachments(image_files, audio_files, [])
if self.debug and attachment_context:
print(f"Media context: {attachment_context[:200]}...")
# Decide whether to search
if self._should_search(question, attachment_context):
if self.debug:
print("Using search-based approach")
answer = self._answer_with_search(question, attachment_context)
answer = remove_thinking_tags(answer)
else:
if self.debug:
print("Using LLM-only approach")
answer = self._answer_with_llm(question, attachment_context)
answer = remove_thinking_tags(answer)
except Exception as e:
answer = f"Sorry, I encountered an error: {e}"
if self.debug:
print(f"Agent returning answer: {answer[:100]}...")
answer = remove_thinking_tags(answer)
return answer
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
"""
Fetch questions from the API and cache them.
"""
global cached_questions
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
cached_questions = questions_data
# Create DataFrame for display
display_data = []
for item in questions_data:
# Check for attachments
has_attachments = False
attachment_info = ""
# Check various fields for attachments
attachment_fields = ['attachments', 'files', 'media', 'resources']
for field in attachment_fields:
if field in item and item[field]:
has_attachments = True
if isinstance(item[field], list):
attachment_info += f"{len(item[field])} {field}, "
else:
attachment_info += f"{field}, "
# Check if question contains URLs
question_text = item.get("question", "")
if 'http' in question_text:
has_attachments = True
attachment_info += "URLs in text, "
if attachment_info:
attachment_info = attachment_info.rstrip(", ")
display_data.append({
"Task ID": item.get("task_id", "Unknown"),
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Has Attachments": "Yes" if has_attachments else "No",
"Attachment Info": attachment_info
})
df = pd.DataFrame(display_data)
attachment_count = sum(1 for item in display_data if item["Has Attachments"] == "Yes")
status_msg = f"Successfully fetched {len(questions_data)} questions. {attachment_count} questions have attachments. Ready to generate answers."
return status_msg, df
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
except Exception as e:
return f"An unexpected error occurred: {e}", None
def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct", progress_callback=None):
"""
Generate answers for all cached questions asynchronously using the intelligent agent.
"""
global cached_answers, processing_status
if not cached_questions:
return "No questions available. Please fetch questions first."
processing_status["is_processing"] = True
processing_status["progress"] = 0
processing_status["total"] = len(cached_questions)
try:
agent = IntelligentAgent(debug=True, model_name=model_name)
cached_answers = {}
for i, question_data in enumerate(cached_questions):
if not processing_status["is_processing"]: # Check if cancelled
break
task_id = question_data.get("task_id")
question_text = question_data.get("question")
if not task_id or question_text is None:
continue
try:
# Use the new method that handles attachments
answer = agent.process_question_with_attachments(question_data)
answer = remove_thinking_tags(answer)
cached_answers[task_id] = {
"question": question_text,
"answer": answer
}
except Exception as e:
cached_answers[task_id] = {
"question": question_text,
"answer": f"AGENT ERROR: {e}"
}
processing_status["progress"] = i + 1
if progress_callback:
progress_callback(i + 1, len(cached_questions))
except Exception as e:
print(f"Error in generate_answers_async: {e}")
finally:
processing_status["is_processing"] = False
def start_answer_generation(model_choice: str):
"""
Start the answer generation process in a separate thread.
"""
if processing_status["is_processing"]:
return "Answer generation is already in progress."
if not cached_questions:
return "No questions available. Please fetch questions first."
# Map model choice to actual model name
model_map = {
"Llama 3.1 8B": "meta-llama/Llama-3.1-8B-Instruct",
"Llama 3.3 70B": "meta-llama/Llama-3.3-70B-Instruct",
"Llama shallow": "tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4",
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
"Qwen 2.5": "Qwen/Qwen‑2.5‑Omni‑7B",
#"Qwen 2.5 instruct": "Qwen/Qwen2.5-14B-Instruct-1M",
"Qwen 3": "Qwen/Qwen3-32B"
}
selected_model = model_map.get(model_choice, "meta-llama/Llama-3.1-8B-Instruct")
# Start generation in background thread
thread = threading.Thread(target=generate_answers_async, args=(selected_model,))
thread.daemon = True
thread.start()
return f"Answer generation started using {model_choice}. Check progress."
def get_generation_progress():
"""
Get the current progress of answer generation.
"""
if not processing_status["is_processing"] and processing_status["progress"] == 0:
return "Not started"
if processing_status["is_processing"]:
progress = processing_status["progress"]
total = processing_status["total"]
status_msg = f"Generating answers... {progress}/{total} completed"
return status_msg
else:
# Generation completed
if cached_answers:
# Create DataFrame with results
display_data = []
for task_id, data in cached_answers.items():
display_data.append({
"Task ID": task_id,
"Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
"Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
})
df = pd.DataFrame(display_data)
status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
return status_msg, df
else:
return "Answer generation completed but no answers were generated."
def submit_cached_answers(profile: gr.OAuthProfile | None):
"""
Submit the cached answers to the evaluation API.
"""
global cached_answers
if not profile:
return "Please log in to Hugging Face first.", None
if not cached_answers:
return "No cached answers available. Please generate answers first.", None
username = profile.username
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
# Prepare submission payload
answers_payload = []
for task_id, data in cached_answers.items():
answers_payload.append({
"task_id": task_id,
"submitted_answer": data["answer"]
})
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
# Submit to API
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
# Create results DataFrame
results_log = []
for task_id, data in cached_answers.items():
results_log.append({
"Task ID": task_id,
"Question": data["question"],
"Submitted Answer": data["answer"]
})
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except:
error_detail += f" Response: {e.response.text[:500]}"
return f"Submission Failed: {error_detail}", None
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", None
except Exception as e:
return f"Submission Failed: {e}", None
def clear_cache():
"""
Clear all cached data.
"""
global cached_answers, cached_questions, processing_status
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
return "Cache cleared successfully.", None
# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Intelligent Agent with Media Processing") as demo:
gr.Markdown("# Intelligent Agent with Conditional Search and Media Processing")
gr.Markdown("This agent can process images and audio files, uses an LLM to decide when search is needed, optimizing for both accuracy and efficiency.")
with gr.Row():
gr.LoginButton()
clear_btn = gr.Button("Clear Cache", variant="secondary")
with gr.Tab("Step 1: Fetch Questions"):
gr.Markdown("### Fetch Questions from API")
fetch_btn = gr.Button("Fetch Questions", variant="primary")
fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
questions_table = gr.DataFrame(label="Available Questions", wrap=True)
fetch_btn.click(
fn=fetch_questions,
outputs=[fetch_status, questions_table]
)
with gr.Tab("Step 2: Generate Answers"):
gr.Markdown("### Generate Answers with Intelligent Search Decision")
with gr.Row():
model_choice = gr.Dropdown(
choices=["Llama 3.1 8B", "Llama 3.3 70B", "Llama shallow", "Mistral 7B", "Qwen 2.5", "Qwen 3"],
value="Llama 3.1 8B",
label="Select Model"
)
generate_btn = gr.Button("Start Answer Generation", variant="primary")
refresh_btn = gr.Button("Refresh Progress", variant="secondary")
generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
answers_table = gr.DataFrame(label="Generated Answers", wrap=True)
generate_btn.click(
fn=start_answer_generation,
inputs=[model_choice],
outputs=generation_status
)
refresh_btn.click(
fn=get_generation_progress,
outputs=[generation_status, answers_table]
)
with gr.Tab("Step 3: Submit Results"):
gr.Markdown("### Submit Generated Answers")
submit_btn = gr.Button("Submit Answers", variant="primary")
submit_status = gr.Textbox(label="Submission Status", lines=4, interactive=False)
results_table = gr.DataFrame(label="Submission Results", wrap=True)
submit_btn.click(
fn=submit_cached_answers,
outputs=[submit_status, results_table]
)
# Clear cache functionality
clear_btn.click(
fn=clear_cache,
outputs=[fetch_status, questions_table]
)
if __name__ == "__main__":
demo.launch()
|