Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,15 +5,15 @@ from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.vectorstores import Chroma
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
-
from langchain.llms import
|
9 |
-
from
|
10 |
import gradio as gr
|
11 |
|
12 |
# workaround for sqlite in HF spaces
|
13 |
__import__('pysqlite3')
|
14 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
15 |
|
16 |
-
# π Load documents
|
17 |
docs = []
|
18 |
for f in os.listdir("multiple_docs"):
|
19 |
if f.endswith(".pdf"):
|
@@ -26,11 +26,10 @@ for f in os.listdir("multiple_docs"):
|
|
26 |
loader = TextLoader(os.path.join("multiple_docs", f))
|
27 |
docs.extend(loader.load())
|
28 |
|
29 |
-
# π Split into
|
30 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
31 |
docs = splitter.split_documents(docs)
|
32 |
|
33 |
-
# 𧬠Prepare texts and metadata
|
34 |
texts = [doc.page_content for doc in docs]
|
35 |
metadatas = [{"id": i} for i in range(len(texts))]
|
36 |
|
@@ -45,12 +44,39 @@ vectorstore = Chroma(
|
|
45 |
vectorstore.add_texts(texts=texts, metadatas=metadatas)
|
46 |
vectorstore.persist()
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
chain = ConversationalRetrievalChain.from_llm(
|
55 |
llm,
|
56 |
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
|
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.vectorstores import Chroma
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.llms.base import LLM
|
9 |
+
from huggingface_hub import InferenceClient
|
10 |
import gradio as gr
|
11 |
|
12 |
# workaround for sqlite in HF spaces
|
13 |
__import__('pysqlite3')
|
14 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
15 |
|
16 |
+
# π Load documents
|
17 |
docs = []
|
18 |
for f in os.listdir("multiple_docs"):
|
19 |
if f.endswith(".pdf"):
|
|
|
26 |
loader = TextLoader(os.path.join("multiple_docs", f))
|
27 |
docs.extend(loader.load())
|
28 |
|
29 |
+
# π Split into chunks
|
30 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
31 |
docs = splitter.split_documents(docs)
|
32 |
|
|
|
33 |
texts = [doc.page_content for doc in docs]
|
34 |
metadatas = [{"id": i} for i in range(len(texts))]
|
35 |
|
|
|
44 |
vectorstore.add_texts(texts=texts, metadatas=metadatas)
|
45 |
vectorstore.persist()
|
46 |
|
47 |
+
# π Get HF token from env variable
|
48 |
+
HF_API_KEY = os.getenv("HF_API_KEY")
|
49 |
+
if HF_API_KEY is None:
|
50 |
+
raise ValueError("HUGGINGFACE_API_KEY environment variable is not set.")
|
51 |
|
52 |
+
# π€ Use HuggingFace Inference API (cloud) for LLM
|
53 |
+
HF_MODEL = "deepseek-ai/deepseek-llm-7b-instruct" # you can change this to another model if you like
|
54 |
+
client = InferenceClient(token=HF_API_KEY)
|
55 |
+
|
56 |
+
# π· Wrap HF client into LangChain LLM interface
|
57 |
+
class HuggingFaceInferenceLLM(LLM):
|
58 |
+
"""LLM that queries HuggingFace Inference API."""
|
59 |
+
|
60 |
+
model: str = HF_MODEL
|
61 |
+
client: InferenceClient = client
|
62 |
+
|
63 |
+
def _call(self, prompt, stop=None, run_manager=None, **kwargs):
|
64 |
+
response = self.client.text_generation(
|
65 |
+
model=self.model,
|
66 |
+
inputs=prompt,
|
67 |
+
max_new_tokens=512,
|
68 |
+
temperature=0.7,
|
69 |
+
do_sample=True,
|
70 |
+
)
|
71 |
+
return response
|
72 |
+
|
73 |
+
@property
|
74 |
+
def _llm_type(self) -> str:
|
75 |
+
return "huggingface_inference_api"
|
76 |
+
|
77 |
+
llm = HuggingFaceInferenceLLM()
|
78 |
+
|
79 |
+
# π Conversational chain
|
80 |
chain = ConversationalRetrievalChain.from_llm(
|
81 |
llm,
|
82 |
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|