File size: 33,406 Bytes
8a7a466
8bb74bc
 
ca3db9f
 
 
 
 
 
8bb74bc
8f31dd0
34fb86a
 
9d30b87
5f31935
 
 
a97aa78
7842b50
a97aa78
5f31935
 
8bb74bc
a6c5937
094dc67
 
865085d
496c07a
a6c5937
496c07a
865085d
a6c5937
496c07a
34fb86a
 
5f31935
 
 
 
 
 
 
 
 
34fb86a
a6c5937
5f31935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb74bc
9d30b87
3af25fd
b313446
3af25fd
 
 
 
0d93972
 
b313446
3af25fd
0d93972
 
 
 
 
 
3af25fd
0d93972
3af25fd
0d93972
1aaf940
3af25fd
0d93972
 
 
3af25fd
0d93972
 
 
3af25fd
a97aa78
1aaf940
3af25fd
1aaf940
3af25fd
0d93972
9d30b87
 
1aaf940
9d30b87
5f31935
 
0d93972
 
 
5f31935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60650d
 
 
 
 
 
 
 
 
5f31935
 
 
 
 
 
 
b60650d
 
 
 
 
 
5f31935
 
 
b60650d
 
 
5f31935
a97aa78
 
 
 
5f31935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3db9f
 
 
 
5f31935
 
 
 
 
 
ca3db9f
5f31935
 
 
 
 
 
a97aa78
 
 
5f31935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3db9f
 
 
 
79c6a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34fb86a
 
 
 
 
 
 
 
 
5f31935
 
 
 
 
34fb86a
 
 
 
 
 
 
 
5f31935
 
 
 
 
 
 
 
 
34fb86a
 
 
 
 
 
 
a97aa78
 
 
 
 
 
 
34fb86a
5f31935
34fb86a
5f31935
 
 
 
ca3db9f
 
 
 
5f31935
 
ca3db9f
 
 
 
 
 
5f31935
 
ca3db9f
 
 
 
 
 
5f31935
 
ca3db9f
 
 
5f31935
34fb86a
 
5f31935
a6c5937
8a7a466
094dc67
5f31935
 
 
 
 
 
 
 
 
 
094dc67
a6c5937
 
 
522835b
 
a6c5937
1f27a2f
a6c5937
 
522835b
ca3db9f
5f31935
 
 
 
 
 
 
9d30b87
ca3db9f
1f27a2f
522835b
 
ca3db9f
5f31935
ca3db9f
522835b
 
ca3db9f
5f31935
ca3db9f
5f31935
 
 
 
 
b60650d
a97aa78
b60650d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a97aa78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60650d
 
a97aa78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3db9f
 
 
 
 
 
 
 
 
231c580
ca3db9f
5f31935
ca3db9f
79c6a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f31935
79c6a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3db9f
79c6a70
 
ca3db9f
79c6a70
 
a97aa78
 
 
 
 
 
 
 
79c6a70
 
 
 
 
 
 
 
 
 
b60650d
 
 
79c6a70
b60650d
 
79c6a70
 
 
 
 
 
 
 
 
 
 
 
 
 
b60650d
79c6a70
 
b60650d
79c6a70
 
 
 
 
 
 
 
 
 
 
ca3db9f
79c6a70
 
 
 
ca3db9f
79c6a70
 
 
 
 
ca3db9f
79c6a70
 
b60650d
9d30b87
1f27a2f
5f31935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3db9f
a97aa78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import streamlit as st
import json
import os
import uuid
from datetime import datetime
from io import BytesIO
from decimal import Decimal  # Add this import for DynamoDB float handling

# Third-party library imports
import boto3
from PIL import Image
import firebase_admin
from firebase_admin import credentials, auth
import pandas as pd
import streamlit_tags as st_tags
from dotenv import load_dotenv

# Add debug mode detection here
debug_mode = "debug" in st.query_params

# Load environment variables from .env file if it exists
load_dotenv()

# Load AWS credentials using correct HF Secrets
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY")
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME", "food-image-crowdsourcing")
DYNAMODB_TABLE = os.getenv("DYNAMODB_TABLE", "image_metadata")

# Load Firebase credentials
FIREBASE_CONFIG = json.loads(os.getenv("FIREBASE_CONFIG", "{}"))

# Initialize Firebase Admin SDK (Prevent multiple initialization)
if not firebase_admin._apps:
    try:
        cred = credentials.Certificate(FIREBASE_CONFIG)
        firebase_admin.initialize_app(cred)
    except Exception as e:
        st.error(f"Firebase initialization error: {e}")
        if st.button("Continue in Demo Mode"):
            st.session_state["demo_mode"] = True
        else:
            st.stop()

# Initialize AWS Services (S3 & DynamoDB)
try:
    s3 = boto3.client(
        "s3",
        aws_access_key_id=AWS_ACCESS_KEY,
        aws_secret_access_key=AWS_SECRET_KEY,
        region_name=AWS_REGION
    )

    dynamodb = boto3.resource(
        "dynamodb", 
        region_name=AWS_REGION, 
        aws_access_key_id=AWS_ACCESS_KEY, 
        aws_secret_access_key=AWS_SECRET_KEY,
    )
    metadata_table = dynamodb.Table(DYNAMODB_TABLE)
except Exception as e:
    st.error(f"AWS initialization error: {e}")
    if st.button("Continue in Demo Mode"):
        st.session_state["demo_mode"] = True
    else:
        st.stop()

FOOD_SUGGESTIONS = [
    "Ajvar", "Angel Wings", "Apple", "Apple Pie", "Apfelstrudel", "Arancini", "Asparagus", "Babka", "Bagel","Baguette", "Baklava",
    "Banana", "Banana Bread", "Banh Mi", "Banitsa", "Barbecue Ribs", "BBQ Chicken", "BBQ Chicken Pizza", "BBQ Ribs", "Bean Buritto",
    "Bear Claw", "Beef Empanadas", "Beef Pho", "Beef Sirloin", "Beef Stroganoff", "Beer", "Beets", "Bell Pepper", "Biryani", "Bistecca alla Fiorentina",
    "Black Beans", "Black Forest Cake", "Black Olives", "Blini", "Borscht", "Bossam", "Brioche", "Broccoli", "Brown Rice", 
    "Bruschetta", "Brussels Sprouts", "Buckwheat", "Buffalo Wings", "Burger", "Burrito", "Butter Chicken", "Cabbage", 
    "Cabbage Rolls", "Calzone", "Cannoli", "Carrot", "Carrot Cake", "Cauliflower", "Cauliflower Soup", "Cevapi", "Ceviche", "Ceviche de Camaron",
    "Challah", "Char Siu", "Cheese Empanadas", "Cheesecake", "Chicken", "Chicken Broth", "Chicken Empanadas", 
    "Chicken Wings", "Chickpeas", "Chiles en Nogada", "Chili Sauce", "Chimichirri Steak", "Chow Mein", 
    "Clams", "Cold Beet Soup", "Corn", "Corn on the Cob", "Coxinha", "Crab Cakes", "Cream Cheese", "Creamy Mushroom Risotto",
    "Creme Brulee", "Creole Gumbo", "Croissant", "Croque Monsieur", "Cucumber", "Cucumber Soup", "Deep-fried", 
    "Dim Sum", "Dolmades", "Doughnuts", "Duck", "Eggplant", "Eggplant Spread", "Eggs", "Enchiladas",
    "Encebollado", "Falafel", "Fanesca", "Fasolada", "Faworki", "Filet Mignon", "Fish", "Fish and Chips",
    "Fish Tacos", "Flatbread", "Flan", "Focaccia", "Four Cheese Pizza", "French Fries", "French Onion Soup",
    "Fresh Fruit", "Fruit Soup", "Garbanzo", "Garlic", "Gazpacho", "Gefilte Fish", "Gibanica", "Ginger Bread",
    "Goat Cheese", "Goulash", "Green Beans", "Green Fried Tomatoes", "Green Onion", "Gyoza", "Gyros", "Hawaiian Pizza",
    "Herbs", "Hoddeok", "Hot and Sour Soup", "Hot Pot", "Hummus", "Hunter's stew", "Ice Cream", "Japchae",
    "Jasmine Rice", "Jollof Rice", "Kabsa", "Kale", "Katsu Curry", "Kavarma", "Kebabs", "Kimchi Fried Rice", "Kisiel",
    "Kremowka", "Kreplach", "Kung Pao Chicken", "Kutia", "Lamb", "Lamb Chops", "Lasagna", "Layered Potato Casserole",
    "Lemon", "Lemon Pie", "Lentil Soup", "Lettuce", "Llapingachos", "Lobster", "Mac and Cheese", "Macarons", "Mahi Mahi", 
    "Mansaf", "Mapo Tofu", "Margherita Pizza", "Marinated", "Marzipan", "Matzo Ball Soup", "Mazurek", "Meat Lover's Pizza",
    "Meat Patties", "Meatloaf", "Miso Soup", "Mixed Salad", "Mixed Vegetables", "Mooncake", "Moussaka", "Mozarella", "Mushroom Pizza", "Mushroom Soup",
    "Mushrooms", "Napoleon Cake", "Neapolitan Pizza", "New York Strip Steak", "Nougat Candies", "Onion Rings", "Onion",
    "Osso Buco", "Oysters", "Pad Thai", "Paella", "Panna Cotta", "Pasta", "Pasta Carbonara", "Pavlova", 
    "Peas", "Pecan Pie", "Peking Duck", "Pelmeni", "Pepperoni Pizza", "Pierogi", "Pineapple", "Pita Bread",
    "Pizza", "Pljeskavica", "Pork Chops", "Pork Knuckle", "Portobello Mushrooms", "Potato pancakes", "Potato Salad",
    "Poutine", "Poppy Seed Roll", "Pudding", "Pulled Pork", "Pumpkin", "Pumpkin Pie", "Radish", "Quesadillas", "Quiche", "Ramen", "Ratatouille",
    "Ravioli", "Red Pepper", "Ribeye Steak", "Ribolita", "Rich Stew", "Risotto alla Milanese", "Rugelach", "Rye Bread",
    "Sachertorte", "Saffron Rice", "Salad", "Salmon", "Sarma", "Sausage", "Sauerkraut", "Seafood Pasta", 
    "Seco de Chivo", "Shashlik", "Shashuka", "Shawarma", "Shepherd's Pie", "Shopska Salad", "Shrimp", "Shrimp Skewers",
    "Soft Egg Noodles", "Sopes", "Soup Dumplings", "Sour Rye Soup", "Souvlaki", "Spaghetti Carbonara", "Spinach", "Sponge Cake",
    "Spring Salad", "Spring Rolls", "Stuffed Cabbage", "Stuffed Grape Leaves", "Stuffed Mushrooms", "Stuffed Pepper", "Supreme Pizza", "Sushi", 
    "Swwet and Sour Pork", "Sweet Potato", "Swordfish Steak", "Szarlotka", "T-bone Steak", "Tacos", "Tamales", "Tandoori Chicken", "Teriyaki", "Tarator",
    "Texas Style Brisket", "Tilapia", "Tiramisu", "Toast", "Tomato", "Tomato Soup", "Tostada", "Tteokbokki", "Tuna Steak",
    "Tzatziki", "Uszka", "Vareniki", "Veal", "Veggie Fries", "Veggie Pizza", "Wheat Bread", "White Bean Soup", "White Pizza", 
    "Wiener Schnitzel", "Wild Mushroom Pasta", "Wine (Red)", "Wine (White)", "Wonton Soup", "Xiaolongbao", "Zeppelins", "Zucchini"
]  # Alphabetically sorted list of diverse cuisines

# Unit options for food weight/volume
UNIT_OPTIONS = ["grams", "ounce(s)", "teaspoon(s)", "tablespoon(s)", "cup(s)", "slice(s)", "piece(s)"]

# Cooking methods
COOKING_METHODS = [
    "Baked", "Boiled", "Braised", "Breaded and fried", "Broiled", "Creamy", "Deep-fried", "Dried", 
    "Fried", "Grilled", "Grilled minced", "Marinated", "Microwaved", "Pan-seared", "Poached", "Raw", 
    "Roasted", "SautΓ©ed", "Slow-cooked", "Smoked", "Steamed", "Stewed", "Stir-fried", "Takeout/Restaurant", "Unknown"
]

# Helper functions
def resize_image(image, max_size=512, quality=85):
    """
    Resize image while preserving aspect ratio and reducing file size
    
    Args:
        image: PIL Image object
        max_size: Maximum dimension (width or height)
        quality: JPEG quality (0-100)
        
    Returns:
        Resized PIL Image
    """
    # Calculate new dimensions
    width, height = image.width, image.height
    
    # Only resize if the image is larger than max_size
    if width > max_size or height > max_size:
        if width > height:
            new_width = max_size
            new_height = int(height * (max_size / width))
        else:
            new_height = max_size
            new_width = int(width * (max_size / height))
        
        # Resize the image
        resized_img = image.resize((new_width, new_height), Image.LANCZOS)
    else:
        # If image is already smaller than max_size, don't resize
        return image
    
    # Convert to RGB if image has alpha channel (for JPEG conversion)
    if resized_img.mode == 'RGBA':
        resized_img = resized_img.convert('RGB')
    
    # Compress the image
    buffer = BytesIO()
    resized_img.save(buffer, format="JPEG", quality=quality, optimize=True)
    buffer.seek(0)
    
    # Return the compressed image
    return Image.open(buffer)

def get_image_size_kb(image):
    """Get image file size in KB"""
    buffer = BytesIO()
    image.save(buffer, format="JPEG")
    size_bytes = buffer.tell()
    return size_bytes / 1024  # Convert to KB

def upload_to_s3(image, user_id, folder=""):
    """
    Upload image to S3 bucket and return the S3 path
    
    Args:
        image: PIL Image object
        user_id: User ID for folder structure
        folder: Subfolder to store the image in (e.g., "raw-uploads" or "processed-512x512")
    """
    if st.session_state.get("demo_mode", False):
        return f"demo/{user_id}/demo_image.jpg"
    
    try:
        # Generate a unique ID for the image
        image_id = str(uuid.uuid4())
        timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
        
        # Create the S3 path with the appropriate folder structure
        if folder:
            s3_path = f"{folder}/{user_id}/{timestamp}_{image_id}.jpg"
        else:
            s3_path = f"{user_id}/{timestamp}_{image_id}.jpg"
        
        # Convert PIL image to bytes
        buffer = BytesIO()
        # Higher quality for raw uploads, compressed for processed
        quality = 95 if folder == "raw-uploads" else 85
        image.save(buffer, format="JPEG", quality=quality, optimize=True)
        buffer.seek(0)

        # Add debug logging
        if debug_mode:
            st.sidebar.info(f"S3 Upload Path: {s3_path}")
        
        # Upload to S3
        s3.upload_fileobj(buffer, S3_BUCKET_NAME, s3_path)
        return s3_path
    except Exception as e:
        st.error(f"Failed to upload image: {e}")
        return None

def save_metadata(user_id, s3_path, food_name, portion_size, portion_unit, cooking_method, ingredients, tokens_awarded):
    """Save metadata to DynamoDB"""
    if st.session_state.get("demo_mode", False):
        st.success("Demo mode: Metadata would be saved to DynamoDB")
        return True
    
    try:
        # Generate a unique ID for the database entry
        image_id = str(uuid.uuid4())
        timestamp = datetime.now().isoformat()
        
        # Ensure portion_size is a Decimal (DynamoDB doesn't support float)
        if not isinstance(portion_size, Decimal):
            portion_size = Decimal(str(portion_size))
        
        # Create item for DynamoDB
        item = {
            'image_id': image_id,
            'user_id': user_id,
            'upload_timestamp': timestamp,
            'food_name': food_name,
            'portion_size': portion_size,  # Decimal type
            'portion_unit': portion_unit,
            'cooking_method': cooking_method,
            'ingredients': ingredients,
            's3_path': s3_path,
            'tokens_awarded': tokens_awarded
        }
        # Add debug logging
        if debug_mode:
            st.sidebar.info(f"DynamoDB Save: {image_id} - {food_name}")
        
        # Save to DynamoDB
        metadata_table.put_item(Item=item)
        return True
    except Exception as e:
        st.error(f"Failed to save metadata: {e}")
        return False

def calculate_tokens(image_quality, has_metadata, is_unique_category):
    """Calculate tokens based on various factors"""
    tokens = 1  # Base token for upload
    
    if image_quality == "high":
        tokens += 1
    
    if has_metadata:
        tokens += 1
    
    if is_unique_category:
        tokens += 1
    
    return tokens

# Initialize session state for first-time users
if "tokens" not in st.session_state:
    st.session_state["tokens"] = 0

if "uploads_count" not in st.session_state:
    st.session_state["uploads_count"] = 0

# Initialize food items list for storing multiple annotations
if "food_items" not in st.session_state:
    st.session_state["food_items"] = []

# Initialize form input state variables
if "custom_food_name" not in st.session_state:
    st.session_state["custom_food_name"] = ""
    
def reset_form_fields():
    """Reset all form fields after adding an item"""
    # Only reset custom food name, keep the dropdown at its current value
    st.session_state["custom_food_name"] = ""
    # We don't reset the dropdown selection as users might want to add multiple similar items

def add_food_item(food_name, portion_size, portion_unit, cooking_method, ingredients):
    """Add a food item to the session state"""
    if food_name and portion_size and portion_unit and cooking_method:
        # Add the food item to the session state
        st.session_state["food_items"].append({
            "food_name": food_name,
            "portion_size": portion_size,
            "portion_unit": portion_unit,
            "cooking_method": cooking_method,
            "ingredients": ingredients
        })
        st.success(f"βœ… Added {food_name} to your submission")
        reset_form_fields()
        return True
    else:
        st.error("❌ Please fill in all required fields")
        return False

# Streamlit Layout - Authentication Section
st.sidebar.title("πŸ”‘ User Authentication")
auth_option = st.sidebar.radio("Select an option", ["Login", "Sign Up", "Logout"])

if auth_option == "Sign Up":
    email = st.sidebar.text_input("Email")
    password = st.sidebar.text_input("Password", type="password")
    if st.sidebar.button("Sign Up"):
        try:
            if st.session_state.get("demo_mode", False):
                st.sidebar.success("βœ… Demo mode: User created successfully! Please log in.")
            else:
                user = auth.create_user(email=email, password=password)
                st.sidebar.success("βœ… User created successfully! Please log in.")
        except Exception as e:
            st.sidebar.error(f"Error: {e}")

if auth_option == "Login":
    email = st.sidebar.text_input("Email")
    password = st.sidebar.text_input("Password", type="password")
    if st.sidebar.button("Login"):
        try:
            if st.session_state.get("demo_mode", False):
                st.session_state["user_id"] = "demo_user_123"
                st.session_state["tokens"] = 0  # Initialize token count
                st.sidebar.success("βœ… Demo mode: Logged in successfully!")
            else:
                user = auth.get_user_by_email(email)
                st.session_state["user_id"] = user.uid
                st.session_state["tokens"] = 0  # Initialize token count
                st.sidebar.success("βœ… Logged in successfully!")
        except Exception as e:
            st.sidebar.error(f"Login failed: {e}")

if auth_option == "Logout" and "user_id" in st.session_state:
    del st.session_state["user_id"]
    st.sidebar.success("βœ… Logged out successfully!")

# Add Debug Mode Indicator to sidebar
if debug_mode:
    st.sidebar.warning("⚠️ DEBUG MODE ACTIVE")
    test_mode = st.sidebar.checkbox("Mark submissions as tests")
    if test_mode:
        st.sidebar.info("Test mode enabled - all submissions will be prefixed with 'TEST_'")

# Ensure user is logged in before uploading
if "user_id" not in st.session_state and not st.session_state.get("demo_mode", False):
    st.warning("⚠️ Please log in to upload images.")
    
    # Add links to guidelines and terms
    st.markdown("### πŸ“š While You're Here")
    st.markdown("Take a moment to read our guidelines and token system:")
    
    # Use expanders instead of columns for better document display
    with st.expander("πŸ“‹ Participation Guidelines"):
        try:
            with open("PARTICIPATION_GUIDELINES.md", "r") as f:
                guidelines = f.read()
            st.markdown(guidelines, unsafe_allow_html=True)
        except Exception as e:
            st.error(f"Could not load guidelines: {e}")
    
    with st.expander("πŸͺ™ Token Rewards System"):
        try:
            with open("TOKEN_REWARDS.md", "r") as f:
                rewards = f.read()
            st.markdown(rewards, unsafe_allow_html=True)
        except Exception as e:
            st.error(f"Could not load rewards information: {e}")
    
    with st.expander("πŸ“œ Terms of Service"):
        try:
            with open("TERMS_OF_SERVICE.md", "r") as f:
                terms = f.read()
            st.markdown(terms, unsafe_allow_html=True)
        except Exception as e:
            st.error(f"Could not load terms: {e}")
    
    st.stop()

# Streamlit Layout - Main App
st.title("🍽️ Food Image Review & Annotation")

# Compliance & Disclaimer Section
with st.expander("πŸ“œ Terms & Conditions", expanded=False):
    st.markdown("### **Terms & Conditions**")
    st.write(
        "By uploading an image, you agree to transfer full copyright to the research team for AI training purposes."
        " You are responsible for ensuring you own the image and it does not violate any copyright laws."
        " We do not guarantee when tokens will be redeemable. Keep track of your user ID.")
    terms_accepted = st.checkbox("I agree to the terms and conditions", key="terms_accepted")
    if not terms_accepted:
        st.warning("⚠️ You must agree to the terms before proceeding.")
        st.stop()

# Upload Image
uploaded_file = st.file_uploader("Upload an image of your food", type=["jpg", "png", "jpeg"])
if uploaded_file:
    original_img = Image.open(uploaded_file)
    st.session_state["original_image"] = original_img

# If an image has been uploaded, process and display it
if "original_image" in st.session_state:
    original_img = st.session_state["original_image"]
    
    # Process the image - resize and compress with more visible difference
    processed_img = resize_image(original_img, max_size=512, quality=85)
    st.session_state["processed_image"] = processed_img
    
    # Calculate file sizes
    original_size = get_image_size_kb(original_img)
    processed_size = get_image_size_kb(processed_img)
    size_reduction = ((original_size - processed_size) / original_size) * 100 if original_size > 0 else 0

    # Display images side by side with border to highlight differences
    col1, col2 = st.columns(2)
    with col1:
        st.subheader("πŸ“· Original Image")
        st.markdown(f"<div style='border:2px solid red;padding:5px;'>", unsafe_allow_html=True)
        st.image(original_img, caption=f"Original ({original_img.width}x{original_img.height} px, {original_size:.1f} KB)", use_container_width=True)
        st.markdown("</div>", unsafe_allow_html=True)
    with col2:
        st.subheader("πŸ–ΌοΈ Processed Image")
        st.markdown(f"<div style='border:2px solid green;padding:5px;'>", unsafe_allow_html=True)
        st.image(processed_img, caption=f"Processed ({processed_img.width}x{processed_img.height} px, {processed_size:.1f} KB)", use_container_width=True)
        st.markdown("</div>", unsafe_allow_html=True)
    
    # Show size reduction
    if size_reduction > 5:  # Only show if there's a meaningful reduction
        st.success(f"βœ… Image size reduced by {size_reduction:.1f}% for faster uploads and processing")

# Add S3 Upload Test Panel for Debug Mode with proper subfolder structure
if debug_mode and "processed_image" in st.session_state:
    with st.expander("πŸ” DEBUG: S3 Upload Tests", expanded=True):
        st.warning("⚠️ Debug Mode: Test S3 functionality with correct folder structure")
        
        s3_test_col1, s3_test_col2 = st.columns(2)
        
        with s3_test_col1:
            st.subheader("Raw Image Upload")
            test_raw_button = st.button("Test Raw Upload")
            
            if test_raw_button and "original_image" in st.session_state:
                # Test upload to raw-uploads folder
                raw_s3_path = upload_to_s3(st.session_state["original_image"], 
                                          st.session_state["user_id"],
                                          folder="raw-uploads")
                if raw_s3_path:
                    st.success(f"βœ… Raw upload successful!")
                    st.code(f"s3://{S3_BUCKET_NAME}/{raw_s3_path}", language="text")
                    st.session_state["test_raw_s3_path"] = raw_s3_path
                else:
                    st.error("❌ Raw upload failed!")
        
        with s3_test_col2:
            st.subheader("Processed Image Upload")
            test_processed_button = st.button("Test Processed Upload")
            
            if test_processed_button and "processed_image" in st.session_state:
                # Test upload to processed-512x512 folder
                processed_s3_path = upload_to_s3(st.session_state["processed_image"], 
                                               st.session_state["user_id"],
                                               folder="processed-512x512")
                if processed_s3_path:
                    st.success(f"βœ… Processed upload successful!")
                    st.code(f"s3://{S3_BUCKET_NAME}/{processed_s3_path}", language="text")
                    st.session_state["test_processed_s3_path"] = processed_s3_path
                else:
                    st.error("❌ Processed upload failed!")

# Add DynamoDB Test Panel for Debug Mode
if debug_mode and "processed_image" in st.session_state:
    with st.expander("πŸ” DEBUG: DynamoDB Test", expanded=True):
        st.warning("⚠️ Debug Mode: Test DynamoDB functionality")
        test_db_col1, test_db_col2 = st.columns(2)
        with test_db_col1:
            test_food = st.text_input("Test Food Name", "TEST_ITEM")
            test_portion = st.number_input("Test Portion", value=1.0)
        with test_db_col2:
            test_unit = st.selectbox("Test Unit", UNIT_OPTIONS)
            test_cooking = st.selectbox("Test Cooking", [""] + COOKING_METHODS)
        
        test_ingredients = st_tags.st_tags(
            label="Test Ingredients",
            text="Press enter to add",
            value=["test_ingredient"],
            maxtags=3
        )
        
        test_db_button = st.button("Test DynamoDB Save")
        if test_db_button:
            # Use the processed path from testing if available
            s3_path = st.session_state.get("test_processed_s3_path", "test/processed-512x512/test_image.jpg")
            
            # Convert to Decimal for DynamoDB
            portion_size_decimal = Decimal(str(test_portion))
            
            # Call save_metadata with test data
            success = save_metadata(
                st.session_state["user_id"], 
                s3_path,
                f"TEST_{test_food}",
                portion_size_decimal,
                test_unit,
                test_cooking,
                test_ingredients,
                1  # Token value for test
            )
            
            if success:
                st.success("βœ… DynamoDB save successful!")
            else:
                st.error("❌ DynamoDB save failed!")
    
    # Display existing food annotations if any
    if st.session_state["food_items"]:
        st.subheader("πŸ“‹ Added Food Items")
        for i, item in enumerate(st.session_state["food_items"]):
            with st.expander(f"🍽️ {item['food_name']} ({item['portion_size']} {item['portion_unit']})"):
                st.write(f"**Cooking Method:** {item['cooking_method']}")
                st.write(f"**Ingredients:** {', '.join(item['ingredients'])}")
                if st.button(f"Remove Item #{i+1}", key=f"remove_{i}"):
                    st.session_state["food_items"].pop(i)
                    st.rerun()

    # Food metadata form
    st.subheader("🍲 Add Food Details")

    # Use Streamlit form to capture Enter key and provide a better UX
    with st.form(key="food_item_form"):
        food_selection = st.selectbox("Food Name", options=[""] + FOOD_SUGGESTIONS, index=0)
        
        # Only show custom food name if the dropdown is empty
        custom_food_name = ""
        if food_selection == "":
            custom_food_name = st.text_input("Or enter a custom food name", 
                                          value=st.session_state["custom_food_name"], 
                                          key="food_name_input")
        
        # Determine the actual food name to use
        food_name = food_selection if food_selection else custom_food_name
        
        col1, col2 = st.columns(2)
        with col1:
            portion_size = st.number_input("Portion Size", min_value=0.1, step=0.1, format="%.2f")
        with col2:
            portion_unit = st.selectbox("Unit", options=UNIT_OPTIONS)
        
        cooking_method = st.selectbox("Cooking Method", options=[""] + COOKING_METHODS)
        
        ingredients = st_tags.st_tags(
            label="Main Ingredients (Add up to 5)",
            text="Press enter to add",
            value=[],
            suggestions=["Salt", "Pepper", "Olive Oil", "Butter", "Garlic", "Onion", "Tomato"],
            maxtags=5
        )
        
        # Submit button inside the form
        submitted = st.form_submit_button(label="βž• Add This Food Item")
        if submitted:
            if add_food_item(food_name, portion_size, portion_unit, cooking_method, ingredients):
                # Store custom food name for next reset
                if custom_food_name:
                    st.session_state["custom_food_name"] = custom_food_name
                st.rerun()
    
    # Separate section for quick-add common foods
    if "original_image" in st.session_state:
        with st.expander("πŸš€ Quick Add Common Foods"):
            st.info("Click to quickly add common food items with default values")
            quick_add_cols = st.columns(3)
            
            common_foods = [
                {"name": "French Fries", "portion": 100, "unit": "grams", "cooking": "Fried", "ingredients": ["Potatoes", "Salt", "Oil"]},
                {"name": "Hamburger", "portion": 1, "unit": "pieces", "cooking": "Grilled", "ingredients": ["Beef", "Bun", "Lettuce", "Tomato"]},
                {"name": "Salad", "portion": 150, "unit": "grams", "cooking": "Raw", "ingredients": ["Lettuce", "Tomato", "Cucumber"]}
            ]
            
            for i, food in enumerate(common_foods):
                with quick_add_cols[i % 3]:
                    if st.button(f"+ {food['name']}", key=f"quick_{i}"):
                        add_food_item(
                            food['name'], 
                            food['portion'], 
                            food['unit'], 
                            food['cooking'], 
                            food['ingredients']
                        )
                        st.rerun()
    
    # Divider before submit button    
    st.markdown("---")
    
    # Submit all foods button - outside the form
    if st.button("πŸ“€ Submit All Food Items", disabled=len(st.session_state["food_items"]) == 0):
    
        # Modify submission to handle test data
        if debug_mode and test_mode:
            for food_item in st.session_state["food_items"]:
                # Prefix the food name to identify test data
                food_item["food_name"] = f"TEST_{food_item['food_name']}"
            st.info("ℹ️ Test mode: Data will be marked as test data")
        
        if not st.session_state["food_items"]:
            st.error("❌ Please add at least one food item before submitting")
        else:
            with st.spinner("Processing your submission..."):
                all_saved = True
                total_tokens = 0
                
                # Determine image quality (simplified version)
                image_quality = "high" if original_img.width >= 1000 and original_img.height >= 1000 else "standard"
                
                # Upload both original and processed images to correct S3 folders
                raw_s3_path = upload_to_s3(original_img, st.session_state["user_id"], folder="raw-uploads")
                processed_s3_path = upload_to_s3(processed_img, st.session_state["user_id"], folder="processed-512x512")
                
                if raw_s3_path and processed_s3_path:
                    # Save each food item with the processed image path
                    for food_item in st.session_state["food_items"]:
                        # Check if metadata is complete
                        has_metadata = True  # Already validated
                        
                        # Check if the food is in a unique category (simplified)
                        is_unique_category = food_item["food_name"] not in ["Pizza", "Burger", "Pasta", "Salad"]
                        
                        # Calculate tokens for this item
                        tokens_awarded = calculate_tokens(image_quality, has_metadata, is_unique_category)
                        total_tokens += tokens_awarded
                        
                        # Convert float to Decimal for DynamoDB
                        portion_size_decimal = Decimal(str(food_item["portion_size"]))
                        
                        # Save metadata to DynamoDB with processed image path
                        success = save_metadata(
                            st.session_state["user_id"],
                            processed_s3_path,  # Use the processed image path
                            food_item["food_name"],
                            portion_size_decimal,  # Use Decimal type
                            food_item["portion_unit"],
                            food_item["cooking_method"],
                            food_item["ingredients"],
                            tokens_awarded
                        )
                        
                        if not success:
                            all_saved = False
                            break
                    
                    if all_saved:
                        st.session_state["tokens"] += total_tokens
                        st.session_state["uploads_count"] += 1
                        st.success(f"βœ… All food items uploaded successfully! You earned {total_tokens} tokens.")
                        
                        # Clear the form and image for a new submission
                        st.session_state.pop("original_image", None)
                        st.session_state.pop("processed_image", None)
                        st.session_state["food_items"] = []
                        st.rerun()
                    else:
                        st.error("Failed to save some items. Please try again.")
                else:
                    st.error("Failed to upload images. Please try again.")

# Display earned tokens
st.sidebar.markdown("---")
st.sidebar.subheader("πŸ† Your Statistics")
st.sidebar.info(f"πŸͺ™ Total Tokens: {st.session_state['tokens']}")
st.sidebar.info(f"πŸ“Έ Total Uploads: {st.session_state.get('uploads_count', 0)}")

# Help and Documentation Links
st.sidebar.markdown("---")
st.sidebar.subheader("πŸ“š Resources")
if st.sidebar.button("Participation Guidelines"):
    with open("PARTICIPATION_GUIDELINES.md", "r") as f:
        guidelines = f.read()
    st.sidebar.markdown(guidelines)

if st.sidebar.button("Token Rewards System"):
    with open("TOKEN_REWARDS.md", "r") as f:
        rewards = f.read()
    st.sidebar.markdown(rewards)

if st.sidebar.button("Terms of Service"):
    with open("TERMS_OF_SERVICE.md", "r") as f:
        terms = f.read()
    st.sidebar.markdown(terms)

# Add Cleanup Tools for Debug Mode
if debug_mode and st.sidebar.checkbox("Show Cleanup Tools"):
    st.sidebar.markdown("---")
    st.sidebar.subheader("🧹 Debug Cleanup Tools")
    
    with st.sidebar.expander("⚠️ Cleanup Test Data"):
        st.sidebar.warning("This will delete all test records from DynamoDB and S3")
        if st.sidebar.button("Delete All Test Records"):
            try:
                # Scan for test records in DynamoDB
                from boto3.dynamodb.conditions import Attr
                
                response = metadata_table.scan(
                    FilterExpression=Attr('food_name').begins_with('TEST_')
                )
                
                total_records = 0
                deleted_records = 0
                s3_paths = []
                
                # Delete each record and collect S3 paths
                for item in response.get('Items', []):
                    total_records += 1
                    try:
                        metadata_table.delete_item(Key={'image_id': item['image_id']})
                        deleted_records += 1
                        s3_paths.append(item['s3_path'])
                    except Exception as e:
                        st.sidebar.error(f"Failed to delete record {item['image_id']}: {e}")
                
                # Delete S3 objects
                for s3_path in set(s3_paths):  # Use set to remove duplicates
                    try:
                        s3.delete_object(Bucket=S3_BUCKET_NAME, Key=s3_path)
                    except Exception as e:
                        st.sidebar.error(f"Failed to delete S3 object {s3_path}: {e}")
                
                st.sidebar.success(f"Deleted {deleted_records}/{total_records} test records and their S3 objects")
            except Exception as e:
                st.sidebar.error(f"Cleanup error: {e}")