Spaces:
Sleeping
Sleeping
File size: 15,381 Bytes
8a7a466 8bb74bc 8f31dd0 34fb86a 9d30b87 5f31935 8bb74bc a6c5937 094dc67 865085d 496c07a a6c5937 496c07a 865085d a6c5937 496c07a 34fb86a 5f31935 34fb86a a6c5937 5f31935 8bb74bc 9d30b87 372c6f5 9d30b87 1f27a2f 9d30b87 5f31935 34fb86a 5f31935 34fb86a 5f31935 34fb86a 5f31935 34fb86a 5f31935 34fb86a 5f31935 a6c5937 8a7a466 094dc67 5f31935 094dc67 a6c5937 522835b a6c5937 1f27a2f a6c5937 522835b 5f31935 9d30b87 5f31935 1f27a2f 522835b 5f31935 522835b 5f31935 9d30b87 1f27a2f 5f31935 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import streamlit as st
import json
import os
import boto3
from PIL import Image
import firebase_admin
from firebase_admin import credentials, auth
import pandas as pd
import uuid
from datetime import datetime
from io import BytesIO
import streamlit_tags as st_tags
from dotenv import load_dotenv
# Load environment variables from .env file if it exists
load_dotenv()
# Load AWS credentials using correct HF Secrets
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY")
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME", "food-image-crowdsourcing")
DYNAMODB_TABLE = os.getenv("DYNAMODB_TABLE", "image_metadata")
# Load Firebase credentials
FIREBASE_CONFIG = json.loads(os.getenv("FIREBASE_CONFIG", "{}"))
# Initialize Firebase Admin SDK (Prevent multiple initialization)
if not firebase_admin._apps:
try:
cred = credentials.Certificate(FIREBASE_CONFIG)
firebase_admin.initialize_app(cred)
except Exception as e:
st.error(f"Firebase initialization error: {e}")
if st.button("Continue in Demo Mode"):
st.session_state["demo_mode"] = True
else:
st.stop()
# Initialize AWS Services (S3 & DynamoDB)
try:
s3 = boto3.client(
"s3",
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION
)
dynamodb = boto3.resource(
"dynamodb",
region_name=AWS_REGION,
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
)
metadata_table = dynamodb.Table(DYNAMODB_TABLE)
except Exception as e:
st.error(f"AWS initialization error: {e}")
if st.button("Continue in Demo Mode"):
st.session_state["demo_mode"] = True
else:
st.stop()
# Food Intellisense List
FOOD_SUGGESTIONS = [
"Apple", "Banana", "Pizza", "Burger", "Pasta", "Sushi", "Tacos", "Salad",
"Chicken (Baked)", "Chicken (Roasted)", "Chicken (Grilled)", "Chicken (Boiled)",
"Fish (Grilled)", "Fish (Fried)", "Fish (Steamed)", "Beef Steak", "Pork Chops",
"Spaghetti Carbonara", "Lasagna", "Pad Thai", "Dim Sum", "Kimchi Fried Rice",
"Biryani", "Croissant", "Baguette", "Miso Soup", "Ramen", "Pierogi", "Gyoza",
"Schnitzel", "Creole Gumbo", "Jambalaya", "Tandoori Chicken", "Falafel", "Shawarma"
] # Extended with diverse cuisines
# Unit options for food weight/volume
UNIT_OPTIONS = ["grams", "ounces", "teaspoons", "tablespoons", "cups", "slices", "pieces"]
# Cooking methods
COOKING_METHODS = [
"Baked", "Boiled", "Broiled", "Fried", "Grilled", "Microwaved",
"Pan-seared", "Poached", "Raw", "Roasted", "SautΓ©ed", "Steamed",
"Stewed", "Stir-fried", "Takeout/Restaurant", "Unknown"
]
# Helper functions
def resize_image(image, max_size=512, quality=85):
"""
Resize image while preserving aspect ratio and reducing file size
Args:
image: PIL Image object
max_size: Maximum dimension (width or height)
quality: JPEG quality (0-100)
Returns:
Resized PIL Image
"""
# Calculate new dimensions
width, height = image.width, image.height
# Only resize if the image is larger than max_size
if width > max_size or height > max_size:
if width > height:
new_width = max_size
new_height = int(height * (max_size / width))
else:
new_height = max_size
new_width = int(width * (max_size / height))
# Resize the image
resized_img = image.resize((new_width, new_height), Image.LANCZOS)
else:
# If image is already smaller than max_size, don't resize
return image
# Convert to RGB if image has alpha channel (for JPEG conversion)
if resized_img.mode == 'RGBA':
resized_img = resized_img.convert('RGB')
# Compress the image
buffer = BytesIO()
resized_img.save(buffer, format="JPEG", quality=quality, optimize=True)
buffer.seek(0)
# Return the compressed image
return Image.open(buffer)
def get_image_size_kb(image):
"""Get image file size in KB"""
buffer = BytesIO()
image.save(buffer, format="JPEG")
size_bytes = buffer.tell()
return size_bytes / 1024 # Convert to KB
def upload_to_s3(image, user_id):
"""Upload image to S3 bucket and return the S3 path"""
if st.session_state.get("demo_mode", False):
return f"demo/{user_id}/demo_image.jpg"
try:
# Generate a unique ID for the image
image_id = str(uuid.uuid4())
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
s3_path = f"{user_id}/{timestamp}_{image_id}.jpg"
# Convert PIL image to bytes
buffer = BytesIO()
image.save(buffer, format="JPEG", quality=85, optimize=True)
buffer.seek(0)
# Upload to S3
s3.upload_fileobj(buffer, S3_BUCKET_NAME, s3_path)
return s3_path
except Exception as e:
st.error(f"Failed to upload image: {e}")
return None
def save_metadata(user_id, s3_path, food_name, portion_size, portion_unit, cooking_method, ingredients, tokens_awarded):
"""Save metadata to DynamoDB"""
if st.session_state.get("demo_mode", False):
st.success("Demo mode: Metadata would be saved to DynamoDB")
return True
try:
# Generate a unique ID for the database entry
image_id = str(uuid.uuid4())
timestamp = datetime.now().isoformat()
# Create item for DynamoDB
item = {
'image_id': image_id,
'user_id': user_id,
'upload_timestamp': timestamp,
'food_name': food_name,
'portion_size': portion_size,
'portion_unit': portion_unit,
'cooking_method': cooking_method,
'ingredients': ingredients,
's3_path': s3_path,
'tokens_awarded': tokens_awarded
}
# Save to DynamoDB
metadata_table.put_item(Item=item)
return True
except Exception as e:
st.error(f"Failed to save metadata: {e}")
return False
def calculate_tokens(image_quality, has_metadata, is_unique_category):
"""Calculate tokens based on various factors"""
tokens = 1 # Base token for upload
if image_quality == "high":
tokens += 1
if has_metadata:
tokens += 1
if is_unique_category:
tokens += 1
return tokens
# Initialize session state for first-time users
if "tokens" not in st.session_state:
st.session_state["tokens"] = 0
if "uploads_count" not in st.session_state:
st.session_state["uploads_count"] = 0
# Streamlit Layout - Authentication Section
st.sidebar.title("π User Authentication")
auth_option = st.sidebar.radio("Select an option", ["Login", "Sign Up", "Logout"])
if auth_option == "Sign Up":
email = st.sidebar.text_input("Email")
password = st.sidebar.text_input("Password", type="password")
if st.sidebar.button("Sign Up"):
try:
if st.session_state.get("demo_mode", False):
st.sidebar.success("β
Demo mode: User created successfully! Please log in.")
else:
user = auth.create_user(email=email, password=password)
st.sidebar.success("β
User created successfully! Please log in.")
except Exception as e:
st.sidebar.error(f"Error: {e}")
if auth_option == "Login":
email = st.sidebar.text_input("Email")
password = st.sidebar.text_input("Password", type="password")
if st.sidebar.button("Login"):
try:
if st.session_state.get("demo_mode", False):
st.session_state["user_id"] = "demo_user_123"
st.session_state["tokens"] = 0 # Initialize token count
st.sidebar.success("β
Demo mode: Logged in successfully!")
else:
user = auth.get_user_by_email(email)
st.session_state["user_id"] = user.uid
st.session_state["tokens"] = 0 # Initialize token count
st.sidebar.success("β
Logged in successfully!")
except Exception as e:
st.sidebar.error(f"Login failed: {e}")
if auth_option == "Logout" and "user_id" in st.session_state:
del st.session_state["user_id"]
st.sidebar.success("β
Logged out successfully!")
# Ensure user is logged in before uploading
if "user_id" not in st.session_state and not st.session_state.get("demo_mode", False):
st.warning("β οΈ Please log in to upload images.")
# Add links to guidelines and terms
st.markdown("### π While You're Here")
st.markdown("Take a moment to read our guidelines and token system:")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("Participation Guidelines"):
with open("PARTICIPATION_GUIDELINES.md", "r") as f:
guidelines = f.read()
st.markdown(guidelines)
with col2:
if st.button("Token Rewards"):
with open("TOKEN_REWARDS.md", "r") as f:
rewards = f.read()
st.markdown(rewards)
with col3:
if st.button("Terms of Service"):
with open("TERMS_OF_SERVICE.md", "r") as f:
terms = f.read()
st.markdown(terms)
st.stop()
# Streamlit Layout - Main App
st.title("π½οΈ Food Image Review & Annotation")
# Compliance & Disclaimer Section
with st.expander("π Terms & Conditions", expanded=False):
st.markdown("### **Terms & Conditions**")
st.write(
"By uploading an image, you agree to transfer full copyright to the research team for AI training purposes."
" You are responsible for ensuring you own the image and it does not violate any copyright laws."
" We do not guarantee when tokens will be redeemable. Keep track of your user ID.")
terms_accepted = st.checkbox("I agree to the terms and conditions", key="terms_accepted")
if not terms_accepted:
st.warning("β οΈ You must agree to the terms before proceeding.")
st.stop()
# Upload Image
uploaded_file = st.file_uploader("Upload an image of your food", type=["jpg", "png", "jpeg"])
if uploaded_file:
original_img = Image.open(uploaded_file)
st.session_state["original_image"] = original_img
# If an image has been uploaded, process and display it
if "original_image" in st.session_state:
original_img = st.session_state["original_image"]
# Process the image - resize and compress
processed_img = resize_image(original_img, max_size=512, quality=85)
st.session_state["processed_image"] = processed_img
# Calculate file sizes
original_size = get_image_size_kb(original_img)
processed_size = get_image_size_kb(processed_img)
size_reduction = ((original_size - processed_size) / original_size) * 100 if original_size > 0 else 0
# Display images side by side
col1, col2 = st.columns(2)
with col1:
st.subheader("π· Original Image")
st.image(original_img, caption=f"Original ({original_img.width}x{original_img.height} px, {original_size:.1f} KB)", use_container_width=True)
with col2:
st.subheader("πΌοΈ Processed Image")
st.image(processed_img, caption=f"Processed ({processed_img.width}x{processed_img.height} px, {processed_size:.1f} KB)", use_container_width=True)
# Show size reduction
if size_reduction > 5: # Only show if there's a meaningful reduction
st.success(f"β
Image size reduced by {size_reduction:.1f}% for faster uploads and processing")
# Food metadata form
st.subheader("π² Food Details")
food_name = st.selectbox("Food Name", options=[""] + FOOD_SUGGESTIONS, index=0)
if food_name == "":
food_name = st.text_input("Or enter a custom food name")
col1, col2 = st.columns(2)
with col1:
portion_size = st.number_input("Portion Size", min_value=0.1, step=0.1)
with col2:
portion_unit = st.selectbox("Unit", options=UNIT_OPTIONS)
cooking_method = st.selectbox("Cooking Method", options=[""] + COOKING_METHODS)
ingredients = st_tags.st_tags(
label="Main Ingredients (Add up to 5)",
text="Press enter to add",
value=[],
suggestions=["Salt", "Pepper", "Olive Oil", "Butter", "Garlic", "Onion", "Tomato"],
maxtags=5
)
# Submit button
if st.button("π€ Submit Food Image"):
with st.spinner("Processing your submission..."):
# Determine image quality (simplified version)
image_quality = "high" if original_img.width >= 1000 and original_img.height >= 1000 else "standard"
# Check if metadata is complete
has_metadata = bool(food_name and portion_size and portion_unit and cooking_method)
# Check if the food is in a unique category (simplified)
is_unique_category = food_name not in ["Pizza", "Burger", "Pasta", "Salad"]
# Calculate tokens
tokens_awarded = calculate_tokens(image_quality, has_metadata, is_unique_category)
# Upload image to S3
s3_path = upload_to_s3(processed_img, st.session_state["user_id"])
if s3_path:
# Save metadata to DynamoDB
success = save_metadata(
st.session_state["user_id"],
s3_path,
food_name,
float(portion_size),
portion_unit,
cooking_method,
ingredients,
tokens_awarded
)
if success:
st.session_state["tokens"] += tokens_awarded
st.session_state["uploads_count"] += 1
st.success(f"β
Food image uploaded successfully! You earned {tokens_awarded} tokens.")
# Clear the form and image for a new submission
st.session_state.pop("original_image", None)
st.session_state.pop("processed_image", None)
st.experimental_rerun()
else:
st.error("Failed to save metadata. Please try again.")
else:
st.error("Failed to upload image. Please try again.")
# Display earned tokens
st.sidebar.markdown("---")
st.sidebar.subheader("π Your Statistics")
st.sidebar.info(f"πͺ Total Tokens: {st.session_state['tokens']}")
st.sidebar.info(f"πΈ Total Uploads: {st.session_state.get('uploads_count', 0)}")
# Help and Documentation Links
st.sidebar.markdown("---")
st.sidebar.subheader("π Resources")
if st.sidebar.button("Participation Guidelines"):
with open("PARTICIPATION_GUIDELINES.md", "r") as f:
guidelines = f.read()
st.sidebar.markdown(guidelines)
if st.sidebar.button("Token Rewards System"):
with open("TOKEN_REWARDS.md", "r") as f:
rewards = f.read()
st.sidebar.markdown(rewards)
if st.sidebar.button("Terms of Service"):
with open("TERMS_OF_SERVICE.md", "r") as f:
terms = f.read()
st.sidebar.markdown(terms) |